DIRECT PRODUCT DECOMPOSITION
OF ALTERNATIVE RINGS

HYO CHUL MYUNG AND LUIS R. JIMENEZ

ABSTRACT. It is shown that any alternative ring A equipped with
the relation \leq, defined by $x \leq y$ if and only if $xy = x^2$, is isomorphic to
a direct product of alternative division rings if and only if the relation \leq
is a partial order on A such that A is hyperatomic and orthogonally com-
plete.

The result stated in the abstract was first proved by Abian [1] for the
commutative associative case. Later, Chacron [4] extended this result to an
arbitrary associative ring. While Chacron proved this by using the axiom of
choice or a subdirect sum representation of any associative ring without non-
zero nilpotent elements, Abian [2] recently gave another method to prove the
result of Chacron without using the axiom of choice. It is the aim of this
paper to extend the above result for the associative case to any alternative
ring.

1. Preliminaries. An alternative ring is a nonassociative ring A satisf-
ying $x^2y = x(xy)$ and $yx^2 = (yx)x$ for all $x, y \in A$. In terms of the associa-
tor $(x, y, z) = (xy)z - x(yz)$, this is to say $(x, x, y) = (y, x, x) = 0$. Thus an
associative ring is alternative, and there exist alternative rings without non-
zero nilpotent elements which are not associative. For this, see, for example,
[3] or [6].

We recall some of the well-known properties in an alternative ring A on
which our proofs will be based. Artin’s theorem in A says that

(1) any subring of A generated by two elements is associative.

Moufang identities are

(2) $(axa)y = a[xy]$,

(3) $a(xy)a = (ax)(ya)$ for all $x, y \in A$.

Also, the following generalized version of Artin’s theorem is proved in [3]:

Presented to the Society, September 24, 1973 under the title Direct product de-
composition of alternative rings without nilpotent elements; received by the editors

AMS (MOS) subject classifications (1970). Primary 17D05.
Key words and phrases. Alternative ring, nilpotent element, direct product,
hyperatomic, orthogonally complete.

Copyright © 1975, American Mathematical Society
If \(A \) is an alternative ring without nonzero nilpotent elements, the following, in view of Artin's theorem, can be shown to be exactly the same as the associative case [2].

(5) \(x^2 = 0 \) for \(x \in A \) if and only if \(x = 0 \).

(6) \(xy = 0 \) for \(x, y \in A \) if and only if \(yx = 0 \).

(7) For any elements \(x, y, t \in A \), \(xy = xt \) if and only if \(yx = tx \).

Hence, in particular, if \(xy = x^2 \) then \(xy = yx \).

2. Main section. In what follows, \(A \) always stands for an alternative ring without nonzero nilpotent elements. First we prove a sequence of lemmas which are essential for the main result.

Lemma 1. Let \(A \) be an alternative ring. The relation defined by \(x \leq y \) if and only if \(xy = x^2 \) is a partial order on \(A \) if and only if \(A \) has no nonzero nilpotent elements.

Proof. Suppose \(A \) has no nonzero nilpotent elements. Then clearly \(\leq \) is reflexive. If \(x \leq y \) and \(y \leq x \), that is, \(xy = x^2 \) and \(yx = y^2 \), then we get \((x - y)^2 = 0 \) and so \(x = y \). To show transitivity of \(\leq \), let \(x \leq y \) and \(y \leq z \). We first show

(8) \(x^2zx = zxx^2 = x^4 \).

Since \(xy = x^2 \) and \(yz = y^2 \), we have

\[x^2zx = x^2(zx) = (xy)(zx) = x(yz)x \quad \text{(by (3))} \]
\[= xy^2x = (xy)^2 \quad \text{(by (7))} \]
\[= x^4. \]

Similarly, we show \(zxx^2 = x^4 \). Using (8) we compute

\[(zxx - x^3)^2 = zxx^2zx - zxx^4 - x^4zx + x^6 = x^4zx - x^6 - x^4zx + x^6 = 0 \]

and so

(9) \(xzx = x^3 \).

Finally, from (8) and (9), we derive \((xz - x^2)^2 = x^3z - x^4 - x^3z + x^4 = 0\), and so \(xz = x^2 \) or \(x \leq z \). Thus \(\leq \) is transitive and is a partial order on \(A \).
The converse is easy and the same as in the associative case.
Henceforth any order in A will mean the relation defined by $x \leq y$ if and only if $xy = x^2$. The following lemma is proved by Hentzel [5]. For convenience, we duplicate it here.

Lemma 2. Let x, y, z be any elements of A. Then $(xy)z = 0$ if and only if $x(yz) = 0$.

Proof. By repeated use of (1) and (3), if $(xy)z = 0$ then

$$(x \cdot yz)^3 = x[yz \cdot (x \cdot yz \cdot x) \cdot yz] = x[yz \cdot (xy \cdot zx) \cdot yz]$$

$$= x[(yz \cdot xy)(zx \cdot yz)] = x[(yz \cdot xy)(z \cdot xy \cdot z)] = 0$$

and so $x(yz) = 0$. The converse is similar.

Lemma 3. (i) For every $x, a \in A$, if $x^2 a = 0$ then $xa = 0$.

(ii) If $x \leq y$ for $x, y \in A$, then $(x, y, A) = 0$. Hence for every element $u \in A$, the subring of A generated by x, y, u is associative.

(iii) If $ab \leq c$ for $a, b, c \in A$, then the subring generated by a, b, c is associative.

Proof. (i) In view of (1), the proof is the same as in the associative case.

(ii) Since $xy = x^2$,

$$0 = (xy - x^2)u = [x(y - x)]u = x[(y - x)u] \quad \text{(Lemma 2)}$$

$$= x(yu - xu) = x(yu) - x(xu) = x(yu) - x^2 u.$$

Hence $(xy)u = x^2 u = x(yu)$ and $(x, y, u) = 0$ for all $u \in A$, as desired.

(iii) In view of (4), it suffices to show $(a, b, c) = 0$. Since $(ab)c = (ab)^2$, using Lemma 2 we have

$$0 = (ab)(c - ab) = a \cdot b(c - ab) = a(bc - bab) = a(bc) - (ab)^2,$$

and so $(a, b, c) = 0$.

Lemma 4. For every element $x, y, u, v \in A$, $x \leq y$ and $u \leq v$ imply $xu \leq yv$.

Proof. We first show that for every $v \in A$, $x \leq y$ implies $xv \leq yv$ and $vx \leq vy$. Since $xy = xx$, by Lemma 3(ii), $(xy)v = x(yv) = x(xv)$. So by (7) we get $(yv)x = xuv$ and $yuvx = xuvx = (xv)^2$, so $xv \leq yv$; the other case is similar. Since $xu \leq yu$ and $yu \leq yv$, by transitivity (Lemma 1) we have that $xu \leq yv$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 5. Let e be an idempotent in A. Then:

(i) $ex = xe \leq x$ for every $x \in A$.

(ii) e is central in A; that is, e commutes with every element in A and $(e, A, A) = 0$.

Proof. (i) is trivial. For (ii), one easily checks $(ex - exe)^2 = (xe - exe)^2 = 0$ and so e commutes with every element in A and $(e, A, A) = 0$.

Lemma 6. Let a, s be elements in A such that $as = a$. Then we have

(i) $asa = a$;

(ii) as and sa are idempotents and $as = sa$;

(iii) if $x \leq as$ for $x \in A$, then x is an idempotent;

(iv) $(a^2, s, A) = 0$.

Proof. (i) One easily checks $(asa - a)^2 = 0$.

(ii) Using (i), we get $(sa)^2 = (sa)(sa) = s(asa) = sa$, and similarly $(as)^2 = as$. This then implies $(sa - as)^2 = 0$ and so $sa = as$.

(iii) If $x \leq as$, then $x^2 \leq x(as)$ and $x(as) \leq x$ by Lemma 5(i) since as is an idempotent. Hence $x^2 \leq x$ by Lemma 1; that is, $x^4 = x^3$. Using this, we get $(x^3 - x^2)^2 = 0$ and so $x^3 = x^2$, which means $x \leq x^2$ and so, by Lemma 1, $x^2 = x$.

(iv) Let y be any element in A. From (2) and (6), we get $0 = (a, as, y) = (a, s, y)a = a(a, s, y)$. Also, a known identity for A says that $(a^2, s, y) = a(a, s, y) + (a, s, y)a$ (see [6, p. 129]). Hence $(a^2, s, y) = 0$, as desired.

Following Abian [1], we have

Definition. A nonzero element a in A is called a hyperatom in A if and only if, for every element x in A,

(i) $x \leq a$ implies $x = 0$ or $x = a$, and

(ii) $ax \neq 0$ implies $a(xs) = a$ for some element s in A.

We now prove the following crucial lemma.

Lemma 7. Let x be a nonzero element in A. If $a \leq x$ for some nonzero hyperatom a in A, then there exists an idempotent hyperatom e such that $ex \neq 0$.
Proof. Since a is a hyperatom, by definition there exists an element $s \in A$ with $a^2s = a$. Then by Lemma 6(ii), $as = sa$ is an idempotent. Hence it suffices to show as is a hyperatom and $(as)x \neq 0$. Let $y \leq as$ for $y \in A$. Then $y^2 = y(as)$ and $ya \leq asa = a$ by Lemmas 4 and 6(i). Thus $ya = 0$ or $ya = a$. If $ya = 0$, $0 = (ya)s = y(as) = y^2$ by Lemma 2 and so $y = 0$. Suppose now $ya = a$. Then we get $(a, s, y) = 0$ since y is an idempotent by Lemma 6(iii). Thus $y = y^2 = y(as) = (ya)s = as$. Hence $y = 0$ or $y = as$. Now suppose $(as)y \neq 0$ for $y \in A$. Then $a(sy) \neq 0$ by Lemma 2 and so $a^2(sy) \neq 0$, but then $a^2(sy) = (a^2s)y = ay \neq 0$ by Lemma 6(iv). Since a is a hyperatom, there exists an $r \in A$ such that $a yr = a$, and hence $(a^2s)(yr) = asa = a^2ssa$;

$$0 = (a^2s)(yr - sa) = a^2[s(yr - sa)] \quad \text{(Lemma 2)},$$

and so

$$0 = a[s(yr - sa)] = (as)(yr - sa).$$

Hence $(as)(yr) = (as)^2 = as$, and this proves as is a hyperatom. Finally if we let $e = as$, then

$$ex = (sa)x = s(ax) \quad \text{(by Lemma 3(ii))}$$

$$= sa^2 = (sa)a = asa = a \neq 0$$

by Lemmas 5(ii) and 6(i).

Lemma 8. The set $E = \{e_i \}_{i \in I}$ of all idempotent hyperatoms in A is an orthogonal set in A, and each $e_i A$ is an alternative division ring such that $e_i A \cap e_j A = 0$ if $i \neq j$.

Since each $e_i A$ has no zero divisors, noting that each e_i is central and that if every nonzero element is an alternative ring has a right inverse it has also a left inverse [6, p. 131], the proof is the same as in the associative case.

As in the associative case, we make the following

Definition. Let A be an alternative ring.

(i) A is called hyperatomic if for every nonzero element r in A there exists a hyperatom a in A such that $a \leq r$.

(ii) A is called orthogonally complete if sup S exists for every orthogonal subset S of A.

The following lemma is an easy consequence of Lemma 7 (also see [1] and [4]).

Lemma 9. Let A be hyperatomic and $E = \{e_i \}_{i \in I}$ be the set of idempotent hyperatoms in A. Then we have
(i) for every $a \in A$, $\sup(e_i a)$ exists and $a = \sup(e_i a)$;
(ii) the function f defined by $f(a) = (e_i a)_{i \in I}$ is a monomorphism from A into a direct product of the alternative division rings $e_i A$.

For the proof of the main result, we need one more lemma.

Lemma 10. Let $\{x_i\}_{i \in I}$ be a subset of the alternative ring A such that $\sup_i x_i$ exists. Then for every element $a \in A$, $\sup_i(ax_i)$ exists and furthermore,

$$a \sup_i x_i = \sup_i(ax_i).$$

Proof. Let u be any upper bound of $\{ax_i\}_{i \in I}$. We proceed as in [2]. Since $ax_i \leq u$,

$$u(ax_i) = (ax_i)^2 \quad \text{for every } i \in I. \quad (10)$$

By Lemma 4, $a \sup_i x_i$ is an upper bound of $\{ax_i\}_{i \in I}$ and so

$$\left(a \sup_i x_i\right)(ax_i) = (ax_i)^2 \quad \text{for every } i \in I. \quad (11)$$

From (10) and (11) we have

$$u(ax_i) = \left(a \sup_i x_i\right)(ax_i) \quad \text{for every } i \in I.$$

Thus

$$x_i^2 = \left(\sup_i x_i\right)x_i + u(ax_i) - \left(a \sup_i x_i\right)(ax_i).$$

Since $ax_i \leq u$ for every $i \in I$, from Lemma 3(iii) and 3(ii) applied to x_i, $\sup_i x_i, a$, we have

$$x_i^2 = \left(\sup_i x_i\right)x_i + (ua)x_i - \left(\left(a \sup_i x_i\right)a\right)x_i$$

$$= \left[\sup_i x_i + ua - \left(a \sup_i x_i\right)a\right]x_i = x_i \left[\sup_i x_i + ua - \left(a \sup_i x_i\right)a\right].$$

Thus

$$x_i \leq \sup_i x_i + ua - \left(a \sup_i x_i\right)a$$

for every $i \in I$, which means

$$\left(\sup_i x_i\right)^2 = \left(\sup_i x_i\right)\left[\sup_i x_i + ua - \left(a \sup_i x_i\right)a\right],$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
which implies

\[(\sup_i x_i)(ua) = \left(\sup_i x_i\right)\left(a \sup_i x_i\right)a.\]

Setting \(x = \sup_i x_i\), from (12) we get \(x(ua) = xaxa\). Applying Lemma 2 to this,

\[0 = x(ua - axa) = x \cdot (u - ax)a = x(u - ax) \cdot a = (xu)a - xaxa.\]

Hence \((xu)a = x(ua) = (xa)^2\) and \(a(xu) = (ax)u = (ax)^2\) or \(ax \leq u\). Since \(ax\)
is an upper bound of \(\{ax_i\}_{i \in I}\), this proves \(ax = a \sup_i x_i = \sup_i (ax_i)\), as desired.

Remark. Lemmas 1, 4, and 10 generalize the results of Abian [2] to the alternative case. Also, our present results are extended to right alternative rings of characteristic \(\neq 2\), since Kleinfeld [7] shows that right alternative rings of characteristic \(\neq 2\) without nonzero nilpotent elements are alternative.

We are now prepared to prove the main result.

Theorem. Any alternative ring \(A\) equipped with the relation \(\leq\), defined by \(x \leq y\) if and only if \(xy = x^2\), is isomorphic to a direct product of alternative division rings if and only if the relation \(\leq\) is a partial order on \(A\) such that \(A\) is hyperatomic and orthogonally complete.

The proof of the Theorem is a consequence of Lemmas 9, 8, and 10, and thus the same as in the associative case (see [1] and [4]).

The following example shows that Lemma 1 and the Theorem do not hold for Jordan rings.

Example. Let \(Q\) be the real quaternions with the standard basis \(1, i, j, k\). Then \(Q\) under the product \(a \cdot b = \frac{1}{2}(ab + ba)\) becomes a Jordan ring \(Q^+\) without nonzero nilpotent elements. One easily checks in \(Q^+\) that \(i + j \leq 2i\) and \(2i \leq 2i + j\) hold but \(i + j \leq 2i + j\) does not. Thus the relation \(\leq\) is not a partial order on \(Q^+\). Also, \(Q^+\) is a Jordan division ring in the sense that \(U_a = 2R^2_a - R^2_a\) is invertible on \(Q^+\) for every \(a \neq 0\) in \(Q^+\), where \(R_a\) is the right multipication in \(Q^+\) by \(a\).

REFERENCES

2. A. Abian, Order relation in rings without nilpotent elements (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTHERN IOWA, CEDAR IOWA 50613 (Current address of H. C. Myung)

Current address (Luis R. Jimenez): Department of Mathematics, Universidad Pedagogica Nacional, Bogotá, Colombia, South America