EXISTENCE AND REPRESENTATION OF SOLUTIONS OF PARABOLIC EQUATIONS

NEIL A. EKLUND

ABSTRACT. Let L be a linear, second order parabolic operator in divergence form and let Q be a bounded cylindrical domain in E^{n+1}. Let $\partial_p Q$ denote the parabolic boundary of Q. To each continuous function f on $\partial_p Q$ there is a unique solution u of the boundary value problem $Lu = 0$ in Q, $u = f$ on $\partial_p Q$. Moreover, for the given L and Q, to each $(x, t) \in Q$ there is a unique nonnegative measure $\mu_{(x,t)}$ with support on $\partial_p Q$ such that the solution of the boundary value problem is given by $u(x, t) = \int_{\partial_p Q} f d\mu_{(x,t)}$.

I. Introduction and preliminary results. Let $\Omega \subset E^n$ be a bounded domain with compact boundary, $\partial \Omega$, and let $T > 0$. Set $Q = \Omega \times (0, T]$ and let $\partial_p Q = \partial \Omega \times [0, T] \cup \{\Omega \times (0)\}$ denote the parabolic boundary of Q. Write $u_{,i} = \partial u/\partial x_i$ and $u_\cdot = \partial u/\partial t$.

The given functions and solutions will lie in multidimensional L^p spaces and the Sobolev space $L^2[0, T; H^{1,2}(\Omega)]$. These spaces are defined in detail by Aronson and Serrin [2]. The parabolic operator under consideration is defined by

$$Lu = u_\cdot - \{a_{ij}(x, t)u_{,i} + d_j(x, t)u_{,j} - b_j(x, t)u_j - c(x, t)u\}
$$

where products involving repeated indices i or j are summed for $1 \leq i, j \leq n$.

The results obtained are as follows:

Theorem 1. Let $f \in C(\partial_p Q)$. There is a unique weak solution u of the boundary value problem $Lu = 0$ in Q, $u = f$ on $\partial_p Q$.

Presented to the Society, September 1, 1972 under the title A representation theorem for solutions of parabolic equations with discontinuous coefficients; received by the editors June 19, 1973 and, in revised form, November 7, 1973.

AMS (MOS) subject classifications (1970). Primary 35K20, 35D05; Secondary 35C15.

Key words and phrases. Parabolic PDE, boundary value problem, existence, integral representation.

Research partially supported by the United States Air Force Office of Scientific Research under contract number AF-AFOSR 883-67 and by the Vanderbilt University Research Council.
Theorem 2. Let L and Q be given. To each $(x, t) \in Q$ there is a unique nonnegative measure $\mu_{(x, t)}$ on ∂Q such that the solution u corresponding to the data f found in Theorem 1 is given by $u(x, t) = \int_{Q} d\mu_{(x, t)}$.

Theorem 1 is an extension of an existence result obtained by Aronson [1] restated below as Theorem B.

The coefficients appearing in the operator L will be assumed to satisfy the following assumptions collectively called (H):

H.1. The $a_{ij}(x, t)$ are measurable functions in (x, t) with
(a) $|a_{ij}(x, t)| \leq M < \infty$ almost everywhere in Q, and
(b) for some $\lambda > 0$, $a_{ij}(x, t)x_{i}x_{j} \geq \lambda |z|^{2} = \lambda \sum_{i=1}^{n} z_{i}^{2}$ for all $z \in \mathbb{R}^{n}$ and almost all $(x, t) \in Q$.

H.2. $c(x, t) \in L^{q}[0, T; L^{p}(\Omega)]$ for some pair p, q satisfying

$$(*) \quad 1 < p, q \leq \infty, \quad n/2p + 1/q < 1.$$

H.3. $b_{i}(x, t), d_{i}(x, t) \in L^{q}[0, T; L^{p}(\Omega)]$ for some pair p, q satisfying

$$(**) \quad 2 < p, q \leq \infty, \quad n/2p + 1/q < 1/2.$$

For easy reference one basic definition and three basic theorems are stated here without proof.

Definition 1. Let L be as described as above. Assume $G(x, t) \in L^{q}[0, T; L^{p}(\Omega)]$ where p, q satisfy $(*)$ and $F_{i}(x, t) \in L^{q}[0, T; L^{p}(\Omega)]$ where p, q satisfy $(**)$, $u(x, t)$ is called a weak solution of the boundary value problem

\begin{equation}
Lu = G(x, t) + \{F_{i}(x, t)\}_{i} \quad \text{in } Q,
\end{equation}

\begin{equation}
\begin{aligned}
u(x, t) &= 0 \quad \text{on } S = \Omega \times [0, T], \\
u(x, t) &= u_{0}(x) \quad \text{on } \Omega
\end{aligned}
\end{equation}

if

(a) $u \in L^{2}[\delta, T; H^{1,2}_{loc}(\Omega)] \cap L^{\infty}[\delta, T; L^{2}_{loc}(\Omega)]$ for each $\delta > 0$, and
(b) $u_{0}(x) \in L^{2}(\Omega),$

and if, for each $v(x, t) \in C^{1}(Q) \cap C^{0}(\overline{Q})$ which vanishes in a neighborhood of S,

\begin{equation}
\int_{0}^{T} \int_{\Omega} \left[a_{ij}u_{i}v_{j} + d_{ij}v_{j}u - b_{i}u_{i}v - cuv - uv_{i} \right] dx \, dt
\end{equation}

(c) $= \int_{0}^{T} \int_{\Omega} \left[Gv - F_{i}v_{i} \right] dx \, dt + \int_{\Omega} u_{0}(x)v(x, 0) dx,$
and

\[(d) \lim_{t \to 0} \int_{\Omega} u(x, t)v(x, t)\,dx = \int_{\Omega} u_0(x)v(x, 0)\,dx.\]

Aronson and Serrin [2] have shown that every weak solution of (2) in Q has a representative that is continuous in Q. Henceforth, u will denote the continuous representative of a given weak solution.

Theorem A (Maximum Principle). Suppose L satisfies (H) and let u be the weak solution of $Lu = 0$ in Q. If $u \in C^0(\overline{Q})$ and $m_1 \leq u \leq m_2$ on $\partial P Q$, then

$$\min(m_1, 0) - Ck_1 \leq u(x, t) \leq \max(m_2, 0) + Ck_2 \quad \text{in} \quad \overline{Q}$$

where C depends on Q and the data in (H) and

$$k_i = \left| m_i \right| \left(\sum_{j=1}^n \| \partial_j \|_{p, q} + \| c \|_{p, q} \right) \quad \text{for} \quad i = 1, 2.$$

A proof of this theorem can be found in [2].

Theorem B (Existence). Suppose L satisfies (H) and $u_0(x)$, $F(x, t)$, and $G(x, t)$ are as described in Definition 1. Then there is a unique weak solution u of the boundary value problem (2), (3). Moreover, if $\partial \Omega$ is smooth and $u_0(x) \in C^0(\Omega)$, then $u \in C(\overline{\Omega})$.

A proof of this theorem can be found in [1].

Theorem C (Energy Inequality). Let u be a solution of $Lu = 0$ in Q with initial values $u_0 \in L^2(\Omega)$ and let $\zeta = \zeta(x)$ be a nonnegative smooth function such that $\zeta u \in L^2[0, T; H^1_0(\Omega)]$. Then there is a positive constant C such that

$$\|\zeta u\|_{2, \infty}^2 + \|\zeta u_x\|_{2, 2}^2 \leq C \left\{ \int_{\Omega} \zeta^2 u_0^2\,dx + \|\zeta_x u\|_{2, 2}^2 \right\}.$$

A proof of this theorem can be found in [2]. Finally, weak solutions of $Lu = 0$ in Q are locally Hölder continuous with exponent depending on the distance of the points to $\partial P Q$.

II. Existence theorem.

Theorem 1. Let L and Q be as described above. Let $f(x, t)$ be continuous on \mathcal{S} and satisfy $f(x, 0) \in L^2(\Omega)$. Then there is a unique weak solution u of the boundary value problem.
Proof. Note that \(f \) is continuous on \(\mathcal{S} \), a compact set; hence \(f \) can be continuously extended to \(\overline{Q} \). Let \(F(x, t) \) denote this extension. Theorem B can be used to solve the boundary value problem \(Lu = 0 \) in \(Q \), \(u(x, t) = 0 \) on \(\mathcal{S} \), \(u(x, 0) = f(x, 0) - F(x, 0) \) on \(\Omega \). Thus, the theorem will follow if the boundary value problem \(Lu = 0 \) in \(Q \), \(u(x, t) = F(x, t) \) on \(\partial_p Q \) can be solved.

For the present assume \(\partial \Omega \) is smooth. Approximate \(F \) on \(\partial_p Q \) by polynomials \(p^k(x, t) \) in the supremum norm so that on \(\partial_p Q \)

\[
m_1 = \min_{\partial_p Q} F < p^k(x, t) < \max_{\partial_p Q} F = m_2.
\]

Extend the domain of \(p^k \) to \(\overline{Q} \) so that the extension \(p^k(x, t) \in C^2(Q) \). Theorem B can be applied to solve the boundary value problem \(Lv^k = -LP^k \) in \(Q \), \(v^k = 0 \) on \(\partial_p Q \).

Define \(u^k(x, t) = v^k(x, t) + P^k(x, t) \). Then \(u^k \) satisfies

\[
Lu^k = 0 \quad \text{in } Q,
\]

\[
u(x, t) = p^k(x, t) \quad \text{on } \partial_p Q.
\]

The remainder of the proof consists of showing

(A) The solution \(u^k \) is independent of the extension \(P^k \) of \(p^k \) to \(\overline{Q} \).

(B) A subsequence of the \(u^k \) can be obtained which converges weakly in \(L^2[0, T; H^1_{\text{loc}}(\Omega)] \) for each \(\delta > 0 \) to a weak solution of \(Lu = 0 \) in \(Q \).

(C) A subsequence of that obtained in (B) converges uniformly on all compact subsets of \(Q \).

(D) The smoothness assumption on \(\partial \Omega \) is removed.

(A) Let \(P^k \) and \(\overline{P}^k \) be two extensions of \(p^k \) to \(\overline{Q} \) with \(P^k, \overline{P}^k \in C^2(Q) \) and let \(u^k, \overline{u}^k \) denote the corresponding solutions to (5). Then, since

\[
[P^k(x, t) - \overline{P}^k(x, t)] \in L^2[0, T; H^1_{\text{loc}}(\Omega)] \quad \text{and} \quad \lim_{t \to 0} [P^k(x, t) - \overline{P}^k(x, t)] = 0,
\]

it follows that \(U^k(x, t) = u^k(x, t) - \overline{u}^k(x, t) \) satisfies \(LU^k = 0 \) in \(Q \), \(U^k = 0 \) on \(\partial_p Q \). Hence, by Theorem B, \(U^k \equiv 0 \) on \(Q \). Therefore, \(P^k(x, t) \) may be assumed to be a polynomial.

(B) Since \(\partial \Omega \) is smooth and \(Lu^k = 0 \) in \(Q \), \(u^k \in C(\overline{Q}) \) and, by Theorem A,

\[
m_1 = \min(m, 0) + \bar{C}k_1 \leq u^k(x, t) \leq \max(m, 0) + \bar{C}k_2 = m_2
\]

on \(\overline{Q} \). Define
SOLUTIONS OF PARABOLIC EQUATIONS

\[\|g\|_Q = \sup_{\delta > 0} \{ \delta \|g_x\|^2_{2,2,Q'} + \|g\|^2_{2,\infty,Q'} \}^{\frac{1}{2}} \] + \sup_Q |g| \]

where \(Q = \{x \in \Omega; \text{dist}(x, \partial \Omega) > \delta \} \times (\delta, T) \). Set \(m = \max(m_2, -m_1) \geq 0 \).

Then, by Theorem C, \(\|u^k\|_Q \leq Cm \). Hence, on each compact subcylinder \(C \) of \(Q \)

\[\|u^k\|^2_{2,2,C} + \|u^k\|^2_{2,\infty,C} \leq \left[\frac{Cm}{\text{dist}(C, \partial \Omega)} \right]^2. \]

Let \(\{C^j\} \) be a sequence of open cylinders with \(\overline{C^j} \subset C^{j+1} \) and \(C^j \uparrow Q \).

On \(C^1 \), the weak compactness of \(L^2[H^1,2(C)] \) and (6) imply there is a subsequence \(\{u^{1,k}\} \) of \(\{u^k\} \) which converges weakly in \(L^2[H^1,2(C^1)] \) to \(u \). Having obtained the sequence \(\{u^j,k\} \) for \(C^j \), the weak compactness of \(L^2[H^1,2(C^{j+1})] \) and (6) imply there is a subsequence \(\{u^{j+1,k}\} \) of \(\{u^j,k\} \) which converges weakly in \(L^2[H^1,2(C^{j+1})] \). Since \(\{u^{j+1,k}\} \subset \{u^j,k\} \), all of the sequences \(\{u^j,k\} \) converge weakly to \(u \) in \(L^2[H^1,2(C)] \) for any compact subcylinder \(C \) of \(Q \). Set \(u^j = u^{j+1} \). Then \(u^j \) converges weakly to \(u \) in \(L^2[H^1,2(C)] \). Hence, \(u \) satisfies \(Lu = 0 \) weakly in \(Q \) and, by Theorem C, \(\|u\|_Q \leq Cm \).

Since the \(u^j \) satisfy \(Lu = 0 \) in \(Q \), they are Hölder continuous on any cylinder \(C \) with \(\overline{C} \subset Q \). Hence, on each such cylinder, the family \(\{u^j\} \) is equicontinuous. Then, by Arzela's theorem, there is a subsequence of \(\{u^j\} \) which converges uniformly on \(C \). By using the sequence \(\{C^j\} \) given in (B) and the diagonalization process again, a subsequence of \(\{u^j\} \) is obtained which converges uniformly on any compact subset of \(Q \) to \(u \). It follows from the uniform convergence of \(p^k \) to \(F \) on \(\partial \overline{Q} \) that \(u \) is the weak solution of the boundary value problem. The uniqueness of \(u \) follows from Theorem B.

(D) Suppose \(\partial \Omega \) is not smooth. Then approximate \(\Omega \) by smooth domains \(\Omega^k \) with \(\overline{\Omega^k} \subset \Omega^{k+1} \), \(\Omega^k \uparrow \Omega \), and the argument in (C) applies to each cylinder \(Q^k = \Omega^k \times (0, T] \). Then the discussion in parts (B) and (C) can be repeated to give the unique weak solution \(u \) in \(Q \).

II. Representation theorem. In this section the following representation is obtained.

Theorem 2. Let \(L \) and \(Q \) be as described above. Then, for each \((x, t) \in Q \), there is a unique nonnegative measure \(\mu_{(x,t)} \) concentrated on \(\partial \overline{Q} \) such that, for each continuous function \(f \) on \(\partial \overline{Q} \), the solution \(u \) of the boundary value problem (4) is given by

\[u(x, t) = \int_{\partial \overline{Q}} f \, d\mu_{(x,t)}. \]
Moreover, for constants a, A such that $0 < a \leq \int_{\partial_p Q} d\mu(x,t) \leq A$, it follows that the solution u satisfies

$$
\min_{\partial_p Q} (a f(x,t), A f(x,t)) \leq u(x,t) \leq \max_{\partial_p Q} (a f(x,t), A f(x,t)).
$$

Proof. Define for each $(x,t) \in \overline{Q}$ the functional $\Lambda_{(x,t)}$ on $C(\partial_p Q)$ by

$$
\Lambda_{(x,t)} f = u(x,t) \quad \text{on} \quad Q,
$$

$$
= f(x,t) \quad \text{on} \quad \partial_p Q.
$$

$\Lambda_{(x,t)}$ is clearly a positive linear functional and the desired result follows from the Riesz representation theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37235

Current address: Department of Mathematics, Centre College, Danville, Kentucky 40422