On the $p$-primary obstructions to finding a cross-section
HTML articles powered by AMS MathViewer
- by Robert Rigdon
- Proc. Amer. Math. Soc. 47 (1975), 243-250
- DOI: https://doi.org/10.1090/S0002-9939-1975-0362308-3
- PDF | Request permission
Abstract:
Let $q:T \to B$ be a (weak) fibration, and let $p$ be an odd prime. In this paper, we show that the existence of a fiber-preserving map $A:T \to T$ having certain properties implies that the $p$-primary obstructions to a cross-section of $q$ vanish. Assuming that $q:T \to B$ has a cross-section, we prove a related theorem which bears on the problem of enumerating the homotopy classes of cross-sections of $q$.References
- J. F. Adams, Stable homotopy and generalized homology,Mathematics Lecture Notes, University of Chicago, Chicago, Ill., 1971.
- James C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447–475. MR 236924, DOI 10.1090/S0002-9947-1968-0236924-4
- James C. Becker, Extensions of cohomology theories, Illinois J. Math. 14 (1970), 551–584. MR 273598
- Arthur H. Copeland Jr. and Mark Mahowald, The odd primary obstructions to finding a section in a $V_{n}$ bundle are zero, Proc. Amer. Math. Soc. 19 (1968), 1270–1272. MR 234463, DOI 10.1090/S0002-9939-1968-0234463-3
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247, DOI 10.1007/978-1-4757-4008-0
- Lawrence L. Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972), 755–769. MR 353315, DOI 10.2140/pjm.1972.41.755
- Mark Mahowald and Robert Rigdon, Obstruction theory with coefficients in a spectrum, Trans. Amer. Math. Soc. 204 (1975), 365–384. MR 488058, DOI 10.1090/S0002-9947-1975-0488058-5
- J. F. McClendon, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183–214. MR 250302, DOI 10.1007/BF01404305
- James F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1–17. MR 296943, DOI 10.1007/BF01109713
- J. F. McClendon, Reducing towers of principal fibrations, Nagoya Math. J. 54 (1974), 149–164. MR 377884, DOI 10.1017/S0027763000024648
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 47 (1975), 243-250
- MSC: Primary 55G40
- DOI: https://doi.org/10.1090/S0002-9939-1975-0362308-3
- MathSciNet review: 0362308