AN APPLICATION OF THE SEPARATION THEOREM FOR HERMITIAN MATRICES

T. L. MARKHAM

ABSTRACT. Suppose H is an $n \times n$ hermitian matrix over the complex field partitioned as $H = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$, where C is invertible. Using the separation theorem on eigenvalues of hermitian matrices, bounds are obtained for the eigenvalues of $(H/C) = A - BC^{-1}B^*$ in terms of the eigenvalues of H and C.

I. Introduction. Suppose H is an hermitian matrix of order n partitioned as

$$H = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}.$$

If C is nonsingular, the Schur complement of C in H is $A - BC^{-1}B^* = (H/C)$. Haynsworth proved in [2] that the inertia of H, denoted $\text{In}(H)$, is $\text{In}(H/C) + \text{In}(C)$. The purpose of this paper is to determine bounds for the eigenvalues of (H/C) in terms of the eigenvalues of H and C. Our main tool will be the well-known interlacing theorem for hermitian matrices, which we now state for completeness.

Theorem [3]. Suppose H is an $n \times n$ hermitian matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Let A be the principal submatrix of H obtained by deleting the kth row and kth column of H. If $\alpha_1 \geq \cdots \geq \alpha_{n-1}$ are the eigenvalues of A, then

$$\lambda_1 \geq \alpha_1 \geq \lambda_2 \geq \alpha_2 \geq \cdots \geq \alpha_{n-1} \geq \lambda_n.$$

From this classical theorem, it follows easily that if A is a principal submatrix of H of order p with eigenvalues $\alpha_1 \geq \cdots \geq \alpha_p$, then

$$\lambda_i \geq \alpha_i \geq \lambda_{n-p+i} \quad \text{for} \quad i = 1, \ldots, p.$$

Received by the editors December 10, 1973.

Key words and phrases. Separation theorem, hermitian matrices, Schur complement, compound matrix, bounds for eigenvalues.
With regard to notation, we write $H(i, k, \ldots, n|j, k, \ldots, n)$ to denote the minor of H with rows indexed by (i, k, \ldots, n) and columns indexed by (j, k, \ldots, n), where, of course, $1 \leq i, j \leq k - 1$. Also, sometimes we find it convenient to denote the eigenvalues of a $p \times p$ hermitian matrix, M, by $\lambda_1(M) \geq \cdots \geq \lambda_p(M)$.

II. Bounds for the eigenvalues of (H/C). Assume $H = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$ is hermitian of order n, A is of order $k - 1$, and thus C is of order $n - k + 1$. Further, suppose C is invertible. Now, if we set $(H/C) = (d_{ij})$, then Crabtree and Haynsworth [1] have shown

$$d_{ij} = \frac{H(i, k, \ldots, n|j, k, \ldots, n)}{\det(C)} \quad \text{for } 1 \leq i, j \leq k - 1. \quad (3)$$

If we let $E = (e_{ij})$ where $e_{ij} = H(i, k, \ldots, n|j, k, \ldots, n)$ for $1 \leq i, j \leq k - 1$, then $(1/\det(C)) \cdot E = (H/C)$. It is easy to verify that E is a principal submatrix of the $(n - k + 2)$-compound matrix of H, $C_{n-k+2}(H)$, which is hermitian. Then the eigenvalues of $C_{n-k+2}(H)$, say $\partial_1 \geq \cdots \geq \partial_n$, are the $\binom{n}{n-k+2}$ products $\lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_{n-k+2}}$, where $1 \leq i_1 < i_2 < \cdots < i_{n-k+2} \leq n$ [4, p. 24], where each λ_k is an eigenvalue of H.

Thus, using (2), we have

$$\partial_i \geq \lambda_i(E) \geq \partial_{n-k+2}^{\binom{n}{n-k+2}-(k-1)+i} \quad \text{for } i = 1, \ldots, k - 1. \quad (4)$$

Finally, if $\det(C) > 0$, we get

$$\frac{\partial_i}{\det(C)} \geq \frac{\lambda_i(H/C)}{\det(C)} \geq \partial_{n-k+2}^{\binom{n}{n-k+2}-(k-i)+1} / \det(C) \quad \text{for } i = 1, \ldots, k - 1. \quad (5)$$

We have proved

Theorem 1. Suppose $H = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$ is an hermitian matrix with the dimensions of A and C as specified earlier. Assume $\det(C) > 0$, and let $C_{n-k+2}(H)$ denote the $(n - k + 2)$-compound matrix of H. If we denote the eigenvalues of $C_{n-k+2}(H)$, C, and (H/C), respectively, by $\partial_1 \geq \cdots \geq \partial_{n-k+2}$,
Theorem for Hermitian Matrices

\[\alpha_1 \geq \cdots \geq \alpha_{n-k+1}; \quad \text{and} \quad \beta_1 \geq \cdots \geq \beta_{k-1}, \text{ then} \]

\[\frac{\partial_i}{\alpha_1 \cdots \alpha_{n-k+1}} \geq \beta_i \geq \frac{\left(\frac{n}{n-k+2}\right)^{-k+i+1}}{\alpha_1 \cdots \alpha_{n-k+1}} \quad \text{for } i = 1, \ldots, k-1. \]

Clearly, the above result holds a fortiori for \(H \) positive definite. In this case, \(\lambda_1 \cdots \lambda_{n-k+2} \) is the largest eigenvalue of \(C_{n-k+2}(H) \) and \(\lambda_{k-1} \cdots \lambda_n \) is the smallest eigenvalue of \(C_{n-k+2}(H) \), and we obtain a

Corollary. Under the hypotheses of the theorem with \(H \) positive definite, then

\[\frac{\lambda_1 \cdots \lambda_{n-k+2}}{\alpha_1 \cdots \alpha_{n-k+1}} \geq \beta_i \geq \frac{\lambda_{k-1} \cdots \lambda_n}{\alpha_1 \cdots \alpha_{n-k+1}} \quad \text{for } i = 1, 2, \ldots, k-1. \]

We make two simple observations concerning the Corollary. For \(k = 2 \), the Corollary becomes

\[\frac{\lambda_1 \cdots \lambda_n}{\alpha_1 \cdots \alpha_{n-1}} \geq \det(H/C) \geq \frac{\lambda_1 \cdots \lambda_n}{\alpha_1 \cdots \alpha_{n-1}}, \]

which yields \(\det(H) = \det(C)\det(H/C) \), a special case of Schur's identity [2, p. 74] since \(C \) is of order \(n-1 \). For \(k = 3 \), the Corollary yields

\[\det(H/C)/\lambda_n \geq \beta_i \geq \det(H/C)/\lambda_1 \quad \text{for } i = 1, 2, \]

and thus \(1/\lambda_n \geq 1/\beta_i \geq 1/\lambda_1 \) for \(i = 1, 2 \), a reciprocal separation property. Further, we obtain \(\lambda_1^2 \geq \beta_1 \beta_2 \geq \lambda_2^2 \) from the above inequality.

III. The positive definite case. Suppose \(A \) is an \(n \times n \) positive definite matrix. Denote by \(A_k \) the principal submatrix of \(A \) contained in rows \(1, 2, \ldots, k \), for \(k = 1, \ldots, n-1 \), and let \(\lambda_n(A) \) be the minimal eigenvalue of \(A \). As before, \(\lambda_1(A) \) denotes the maximal eigenvalue of \(A \). The following theorem and proof is similar to a result of Watford [5, Theorem 4] on M-matrices.

Theorem 2. Suppose \(A \) is a positive definite matrix of order \(n \). Then

\[\lambda_n(A) \leq \lambda_n(A|A_1) \leq \cdots \leq \lambda_n(A|A_{n-1}), \]

and

\[\lambda_1(A|A_{n-1}) \leq \cdots \leq \lambda_1(A|A_1) \leq \lambda_1(A). \]

Proof. Assume, first, that \(A \) is partitioned as

\[A = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix}. \]
Now $\lambda_1(A^{-1}) = 1/\lambda_n(A)$, and since $(A|B)^{-1}$ is a principal submatrix of A^{-1} [5, p. 251], we have $\lambda_1[(A|B)^{-1}] \leq \lambda_1(A^{-1})$, using the separation theorem. Thus it follows that

$$\lambda_n(A) \leq \lambda_n(A|B).$$

Next, we note that if $B = A_{p+1}$ in (6), and

$$A_{p+1} = \begin{pmatrix}
A_p & B_{12} \\
B_{12}^* & a_{p+1,p+1}
\end{pmatrix};$$

then

$$(A|A_{p+1}) = ((A|A_p)|(A_{p+1}|A_p)),$$

the Haynsworth quotient property [1]. Using (7), we have

$$\lambda_n(A|A_{p+1}) \geq \lambda_n(A|A_p) \geq \lambda_n(A),$$

and statement (2.1) is immediate. We obtain (2.2) by noting $\lambda_n(A) = 1/\lambda_1(A)$.

IV. Conclusion. There exist matrices for which the bounds of Theorem 1 are exact. However, even if $H = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$, the bounds may give only rough estimates for the eigenvalues of $(H/C) = A$. For example, if $A = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 4 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$, then $H = A + C$ has eigenvalues $\lambda_1 = 7$, $\lambda_2 = 4$, $\lambda_3 = 2$, $\lambda_4 = 1$. But $(H/C) = A$ has eigenvalues $\beta_1 = 4$, $\beta_2 = 2$, and $C_{n-k+2}(H) = C_3(H)$ has eigenvalues $\delta_1 = 56$, $\delta_2 = 14$, $\delta_3 = 8$. The theorem yields $56/7 \geq \beta_1 \geq 14/7$ and $14/7 \geq \beta_2 \geq 8/7$. It seems likely that one could obtain "tighter" bounds in general by an application of the Courant minimax theorem for hermitian matrices—results which we shall not investigate in this paper.

REFERENCES

