Nearly comonotone approximation
HTML articles powered by AMS MathViewer
- by John A. Roulier
- Proc. Amer. Math. Soc. 47 (1975), 84-88
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364967-8
- PDF | Request permission
Abstract:
This paper obtains estimates on the degree of nearly comonotone approximation which extend and improve the estimate obtained by Newman, Passow, and Raymon. In particular, the restriction that $f \in {\operatorname {Lip} _M}1$ is removed, and estimates for the degree of nearly comonotone approximation are obtained for all proper piecewise monotone functions. It is also shown that if $f’$ exists and is continuous on the interval, then the ordinary polynomials of best approximation form a nearly comonotone sequence.References
- G. G. Lorentz, Monotone approximation, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 201–215. MR 0346375
- G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials. I, J. Approximation Theory 1 (1968), 501–504. MR 239342, DOI 10.1016/0021-9045(68)90039-7
- G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials. II, J. Approximation Theory 2 (1969), 265–269. MR 244677, DOI 10.1016/0021-9045(69)90022-7
- D. J. Newman, Eli Passow, and Louis Raymon, Piecewise monotone polynomial approximation, Trans. Amer. Math. Soc. 172 (1972), 465–472. MR 310506, DOI 10.1090/S0002-9947-1972-0310506-9
- John A. Roulier, Monotone approximation of certain classes of functions, J. Approximation Theory 1 (1968), 319–324. MR 236580, DOI 10.1016/0021-9045(68)90009-9 J. A. Roulier, Monotone and weighted approximation, Doctoral Dissertation, Syracuse University, Syracuse, N. Y., 1968.
- O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667–671. MR 185334
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 47 (1975), 84-88
- MSC: Primary 41A25
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364967-8
- MathSciNet review: 0364967