ABSTRACT. Let X be a finite tree. It is shown that X is order-isomorphic to the prime spectrum of a Bezout domain R such that every localization of R is a maximal valuation ring.

Let R be a Bezout domain and let $\text{spec } R$ denote the set of prime ideals of R considered as a partially ordered set under inclusion. It is well known that the localizations of R at prime ideals are valuation rings and that $\text{spec } R$ is a tree: for each $s \in \text{spec } R$, $\{x \in \text{spec } R: x \leq s\}$ is totally ordered. The trees of the form $\text{spec } R$, R a Bezout domain, have been completely characterized by Lewis [L], although the localizations R_M in this construction are in general badly behaved. In this paper we show that every finite tree with a unique minimal element is order-isomorphic to $\text{spec } R$, for some Bezout domain R which is locally a maximal valuation ring.

The construction in this paper is a generalization of an example of Barbara Osofsky which appears in [M2]. I would like to thank her for sending me the details of her construction with some suggestions for generalization. Also I am grateful to Tom Shores who carefully worked out some helpful facts about maximally complete fields.

Main theorem. Let X be a finite tree. Then there exists a Bezout domain R such that (1) $\text{spec } R$ is order-isomorphic to X, and (2) the localizations of R at prime ideals are maximal valuation rings.

Proof. The procedure will be to exhibit R as the intersection of a finite number of maximal valuation rings. Let $\mathcal{C} = \{C_0, C_1, \ldots, C_n\}$ denote the set of maximal chains indexed so that $\text{length } (C_i) \leq \text{length } (C_{i-1})$, $1 \leq i \leq n$. (As usual, the length of a chain is one less than its cardinality.) For each maximal chain C_i, we find a maximal valuation ring \mathfrak{O}_i, whose rank is equal to the length of the chain C_i and whose quotient field is an alg-
braicly closed field \(K \) (fixed for all \(i \)). More precisely, we first construct \(\mathcal{O}_0 \), whose rank is equal to the length of \(C_0 \); then each \(\mathcal{O}_i \) will be an appropriate localization of \(\mathcal{O}_0 \). In order to produce maximal valuation rings \(V_i, 0 \leq i \leq n \), such that \(R = V_0 \cap V_1 \cap \cdots \cap V_n \) has the correct prime spectrum, we will define automorphisms \(\alpha_i \) of \(K \) in such a way that \(V_i = \alpha_i(\mathcal{O}_{i}) \) has the appropriate number of prime ideals in common with \(\mathcal{O}_0 \).

In what follows, we let \(C \) denote the field of complex numbers; \(\mathbb{Q} \) is the additive ordered group of the rationals; and \(\mathbb{Q}^+ \) is the set of positive rationals. Let \(k \) be the length \((C_0, \), a longest chain in \(X \).

We begin by constructing \(\mathcal{O} = \mathcal{O}_0 \), which is to be a valuation ring of rank \(k \). Define a valuation \(v \) on \(\mathbb{C}(x_1, x_2, \cdots, x_k) \), the quotient field of the complex numbers, with \(k \) indeterminates adjoined, to be the valuation induced by \(v(x_1^{a_1}x_2^{a_2}\cdots x_k^{a_k}) = (a_1, a_2, \cdots, a_k) \in G \), where \(G \) is the direct sum of \(k \) copies of \(\mathbb{Q} \), ordered lexicographically. Let \(K \) be the maximal completion of \(\mathbb{C}(x_1, x_2, \cdots, x_k) \) with respect to \(v \); we denote the extension of \(v \) to \(K \) by \(v \) also. Now \(\mathcal{O} \), the valuation ring of \(K \), is a maximal valuation ring since \(K \) is maximally complete \([S, p. 45]\). Also \(K \) is algebraically closed. (The latter statement follows from \([S, Theorem 12, p. 57 \) and Theorem 11, p. 54].)

Since \(v \) behaves properly on monomials with integer exponents, it must do so on monomials with rational exponents, that is \(v(x_1^{a_1}x_2^{a_2}\cdots x_k^{a_k}) = (a_1, a_2, \cdots, a_k) \), for all \(a_i \in \mathbb{Q}^+ \). Now for each \(j \leq k \), \(P_j = \{rx^j \mid r \in \mathcal{O}, \ a \in \mathbb{Q}^+ \} \) is a prime ideal of \(\mathcal{O} \). (Note that an element \(r \in \mathcal{O} \) is in \(P_j \) if and only if \(v(r) \) has one of its first \(r \) coordinates positive.) Also, because the rank of \(G \) is \(k \), these together with \(P_0 = (0) \) are all the prime ideals of \(\mathcal{O} \). (See \([S, Corollary, p. 15] \) for more details here.) To see that \(P_{j-1} \subseteq P_j \), note that \(v(x_{j-1}/x_j) = (0, 0, 0, \cdots, 0, 1, -1, 0, 0, \cdots, 0) \), which is positive in the lexicographic ordering. Thus \(x_{j-1}/x_j \in \mathcal{O} \), so \(x_j^{a_j} \in P_j \) for all \(1 \leq j \leq k \) and \(a \in \mathbb{Q}^+ \).

Thus we have found a valuation ring \(\mathcal{O} \) with quotient field \(K \) and valuation \(v: K \to G \) (the direct sum of \(k \) copies of \(\mathbb{Q} \)), satisfying these properties:

1. \(K \) contains \(\mathbb{C}(x_1, x_2, \cdots, x_k) \), where \(x_1, x_2, \cdots x_k \) are indeterminates over \(\mathbb{C} \).

2. The map \(v: K \to G \) reads exponents of monomials, that is, for any set of \(k \) rational numbers \(\{a_1, a_2, \cdots, a_k\} \), we have \(v(x_1^{a_1}x_2^{a_2}\cdots x_k^{a_k}) = (a_1, a_2, \cdots, a_k) \).

3. The prime ideals of \(\mathcal{O} \) are \(\{P_j \mid 0 \leq j \leq k\} \) where \(P_0 = (0) \) and
Let \(P_j = \{ rx^a | r \in \mathcal{O}, a \in \mathbb{Q}^+ \} \); also \(P_i \subseteq P_j \) if \(i \leq j \).

We now pause to establish notation which will be fixed for the rest of the paper. As above, suppose (i) \(X \) has maximal chains \(C_0, C_1, \cdots, C_n \), (ii) for each \(0 \leq i \leq n \), the length of \(C_i \) is \(k_i \) (a positive integer), and (iii) \(k_0 \geq k_1 \geq \cdots \geq k_n \). Write (iv) \(C_i = \{ c_{i0}, c_{i1}, \cdots, c_{ik_i} \} \), where \(C_{io} < c_{i1} < \cdots < c_{ik_i} \).

We use an induction procedure to define automorphisms \(\alpha_i \) of \(K \). Let \(\alpha_0 \) be the identity automorphism. To define \(\alpha_i \), choose some maximal chain \(C_m \) with \(0 \leq m \leq i - 1 \), such that among all the maximal chains \(C_0, C_1, \cdots, C_{i-1} \), the chain \(C_m \) has the largest number of elements in common with \(C_i \). (Clearly the minimal element of \(X \) is in every \(C_i \).) Let \(r \) be the (unique) integer such that \(c_{ir} = c_{mj} \) for all \(j < r \) but \(c_{ir} \neq c_{mr} \). (Then, since \(X \) is a tree, \(c_{ij} \neq c_{mj} \) for all \(r \leq j \leq k_m \).) Define \(\alpha_i \) by \(\alpha_i(x_j) = \alpha_m(x_j) \) if \(0 < j < r \) and \(\alpha_i(x_j) = x_j + i \) if \(r \leq j \leq k \), and extend \(\alpha_i \) to an automorphism (still called \(\alpha_i \)) of \(K \) fixing \(C \). (Here \(i \) is regarded as a constant polynomial.) This is possible since the \(x_j \) are part of a transcendence basis for \(K \) over \(C \), and \(K \) is algebraically closed. Notice that the \(\alpha_i \) have been defined so that

\[
(4) \quad \text{For each } j, \text{ if } m \text{ is the least integer for which } c_{mj} = c_{ij}, \text{ then } \alpha_i(x_j) = \alpha_m(x_j) = x_j + m. \quad \text{In particular } \alpha_i(x_{ik_i}) = x_{ik_i} + i.
\]

\((5) \) Claim: If \(\alpha_i(x_j) \in \alpha_m(P_i) \), for \(0 \leq i, m \leq n \) and \(1 \leq l, t \leq k \), then \(\alpha_i(x_l) = \alpha_m(x_l) \) and \(l \leq t \).

Proof. By (4) above, \(\alpha_i(x_j) = \alpha_m(x_j) + d \), for some integer \(d \). Thus \(\alpha_m(x_l + d) = \alpha_m(x_l) + d = \alpha_i(x_l) \in \alpha_m(P_t) \), and so \(x_l + d \in P_t \). If \(d \neq 0 \), then \(x_l + d \) is a unit in \(\mathcal{O} \); hence \(d \) must be 0 and \(l \leq t \).

Let \(\mathcal{O}_i \) be the localization \(\mathcal{O}_{P_i} \) for \(0 \leq i \leq n \), and let \(V_i = \alpha_i(\mathcal{O}_i) \).

Our next project is to investigate the prime ideals of \(R = V_0 \cap V_1 \cap \cdots \cap V_n \).

Notice that the \(V_i \) are irredundant in the intersection for \(R \). For if not, suppose \(V_0 \cap V_1 \cap \cdots \cap V_{m-1} \cap V_{m+1} \cap \cdots \cap V_n \subseteq V_m \). Let \(t = k_m \) and set \(N_m = \alpha_m(P_t) \), the maximal ideal of \(V_m \). Now set \(z = x_t + m = \alpha_m(x_t) \); \(z \) is an element of \(N_m \), so \(1/z \notin V_m \). Thus \(1/z \notin V_i \) for some \(i \neq m \), whence \(z \in N_i = \alpha_i(P_k) \), the maximal ideal of \(V_i \). By (5), \(\alpha_m(x_t) = \alpha_i(x_t) \) and \(t \leq k_i \), and using (4) we deduce \(c_{mt} = c_{it} \). Since \(X \) is a tree, \(c_{mt} = c_{ij} \) for all \(0 \leq j \leq i \). Now \(C_m \) has only \(t \) elements; thus \(C_m \subseteq C_i \), a contradiction.

By [K, Theorem 107, p. 78], \(R \) is Bezout and the maximal ideals of \(R \) are precisely \({}|N_j \cap R, 0 \leq j \leq n| \), where \(N_j \) is the maximal ideal of \(V_j \); also \(V_j \) is the localization of \(R \) at \(N_j \cap R \). It easily follows that every prime ideal of \(R \) is of the form \(Q \cap R \), where \(Q \) is a prime ideal of some \(V_j \), that is:
The prime ideals of R are of the form $\alpha_i(P_j) \cap R$ with $0 \leq i \leq n$, $0 \leq j \leq k_i$. (Note that these ideals need not be distinct for different i.)

Each localization of R is a localization of some V_i and the latter is isomorphic to the maximal valuation ring $\hat{\mathcal{O}}_i$. Therefore the localizations of R at prime ideals are maximal valuation rings.

To complete the proof, we define a function ϕ from X to $\text{spec } R$ by $\phi(c_{ij}) = \alpha_i(P_j) \cap R$; we will show ϕ is an order isomorphism. First we check well-definedness of ϕ. It suffices to show that if $c_{lj} = c_{st}$ for some $s < l$, then $\phi(c_{lj}) = \phi(c_{st})$. Since X is a tree, $j = t$ and $c_{lh} = c_{sh}$ for all $h \leq j$. As in (4), let m be the smallest nonnegative integer so that $c_{mj} = c_{lj}$; then $\alpha_m(x_i) = \alpha_i(x_i)$ and so $\alpha_m(P_j) = \alpha_i(P_j)$. Also $m \leq s$ and m is the smallest index with $c_{mj} = c_{sj}$, so $\alpha_m(x_i) = \alpha_s(x_i)$. Thus $\phi(c_{lj}) = \phi(c_{st})$.

The function ϕ is an isomorphism. For suppose $\phi(c_{ij}) = \phi(c_{kl})$, that is $\alpha_i(P_j) \cap R = \alpha_k(P_l) \cap R$, then $\alpha_i(x_i) = \alpha_k(x_l) \in \alpha_i(P_j) \cap R$. By (5), this implies $\alpha_i(x_i) = \alpha_k(x_l)$ and $t \leq j$. Similarly, from $\alpha_i(x_i) \in \alpha_k(P_l)$, we see $\alpha_i(x_i) = \alpha_k(x_l)$ and $t = j$. Choose m smallest so that $c_{mj} = c_{lj}$ and choose h smallest so that $c_{hj} = c_{lj}$. Then $\alpha_m(x_i) = \alpha_m(x_l) = x_i + m$, and $\alpha_h(x_l) = \alpha_h(x_l) = x_i + h$; thus $h = m$ and $c_{ij} = c_{lj} = c_{lt}$.

We claim ϕ is an order isomorphism. If $c_{lt} \leq c_{ij}$ for some $0 \leq l$, $i \leq n$, $0 \leq t \leq k_l$, $0 \leq j \leq k_i$, then since X is a tree, $c_{lt} = c_{it}$ and $t \leq j$. But $\phi(c_{lt}) = \phi(c_{it}) = \alpha_i(P_j) \cap R$ and $\phi(c_{ij}) = \alpha_i(P_j) \cap R$. Now $t \leq j$ implies $P_{it} \subseteq P_j$ and $\alpha_i(P_j) \cap R \subseteq \alpha_i(P_j) \cap R$. Thus $\phi(c_{lt}) \leq \phi(c_{ij})$. This completes the proof.

Remarks. It is unknown whether the Bezout domains R constructed here enjoy the property: every finitely generated R-module is a direct sum of cyclic modules. In [M1], Matlis shows the property is possessed by rings of the type we have constructed if each nonzero prime ideal is contained in a unique maximal ideal.

The procedure used in our construction can be used to produce certain infinite trees. For example, we can certainly construct a maximal valuation ring $\hat{\mathcal{O}}_0$ such that $\text{spec } \hat{\mathcal{O}}_0$ looks like $\mathbb{N}^{-1} = \{1/n \cup \{0\}$, where n ranges over the natural numbers. By altering this $\hat{\mathcal{O}}_0$ as outlined above, we can display any tree (1) which has only finitely many maximal chains C_i, and (2) each C_i looks like \mathbb{N}^{-1}.

In [L], Lewis shows $X \sim \text{spec } R$ for some Bezout domain R if and only if (1) X has a unique minimal element; (2) if $x, y, z \in X$ and $x \leq z$, $y \leq z$, then $x \leq y$ or $y \leq x$ (3) if $x, y \in X$ and $x < y$, then there exists $z, w \in X$ with $x \leq z < w \leq y$ and no elements of X lie between z and w; and (4)
every totally ordered subset of X has a least upper bound and greatest lower bound. He shows that, for any partially ordered set X, there is a Bezout domain R with $\text{spec } R$ order isomorphic to X if and only if X satisfies (1)–(4). In his construction, Lewis makes use of the Bezout domains constructed by Jaffard which appear in [J, Theorem 3, p. 78] and [O, p. 586]. Jaffard's Bezout domain is an overring of a group algebra $F[G]$ with the same quotient field as $F[G]$, where F is a field and G is a lattice ordered group. Thus, it can be shown that the domains Lewis produces are not locally maximal, if the partially ordered set has more than one element. (See for example [S, p. 36, 51].) We have still not answered the following question in the infinite case: is there a locally maximal Bezout domain for any partially ordered set X satisfying (1)–(4)?

Added in proof. The author has shown that if a domain R has the property that every finitely generated R-module is a direct sum of cyclics, then every nonzero prime ideal of R is contained in a unique maximal ideal.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN, NEBRASKA 68508