On type sets of torsion-free abelian groups of rank 2
HTML articles powered by AMS MathViewer
- by Ryuichi Ito
- Proc. Amer. Math. Soc. 48 (1975), 39-42
- DOI: https://doi.org/10.1090/S0002-9939-1975-0354900-7
- PDF | Request permission
Abstract:
We prove existence of a torsion-free abelian group with a prescribed type-set.References
- R. A. Beaumont and R. S. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc. 38 (1961), 41. MR 130297 L. Fuchs, Infinite abelian groups. Vols. I, II, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970, 1973. MR 41 #333.
- John Koehler, Some torsion-free rank two groups, Acta Sci. Math. (Szeged) 25 (1964), 186–190. MR 169909
- John E. Koehler, The type set of a torsion-free group of finite rank, Illinois J. Math. 9 (1965), 66–86. MR 171841
- A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964. MR 0184920
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 39-42
- DOI: https://doi.org/10.1090/S0002-9939-1975-0354900-7
- MathSciNet review: 0354900