ON THE EXISTENCE OF A SOLUTION OF \(f(x) = kx \)
FOR A CONTINUOUS NOT NECESSARILY LINEAR OPERATOR

ANA I. ISTRĂȚESCU AND VASILE I. ISTRĂȚESCU

ABSTRACT. In a recent paper, S. Venkateswaran has asserted that
\(f(x) = kx \) has a solution when \(|k|\) is sufficiently large. In the paper
a counterexample to this assertion is given, and it is indicated when
the assertion is true.

Let \(E \) be a Banach space and \(f \) a continuous operator on \(E \); i.e. \(f \) is
a continuous, not necessarily linear mapping from \(E \) into \(E \). In a recent
note, S. Venkateswaran has proved that \(f(x) = kx \) has a solution when \(|k|\)
is sufficiently large.

In what follows we give a counterexample to this assertion.

Let \(E \) be the space of all convergent sequences to zero, and define the
mapping
\[
\begin{align*}
f(x) &= (1, |x_2|^\frac{1}{2}, |x_3|^\frac{1}{3}, \ldots, |x_n|^\frac{1}{n}, \ldots) + (1, 1/2, 1/3, \ldots)
\end{align*}
\]
which is continuous and nonlinear.

Suppose now that for some \(k \) there exists \(x_0 \) such that \(f(x_0) = kx_0 \). If
\(x_0 = (x_1, x_2, \ldots) \), we obtain \(kx_1 = 2 \) and, thus, \(k \neq 0 \), and for all \(i \geq 2 \),
\[
kx_i = x_i^\frac{1}{i} + 1/i,
\]
which gives that \(|kx_i| \geq |x_i|^\frac{1}{2} \), which implies that \(|kx_i|^\frac{1}{2} \geq 1 \), which
represents a contradiction.

For generalization of the Altman fixed point theorem, we refer to [2],
[3] and remark that the Theorem of [1] is true when \(f \) is completely continuous
(compact mapping) or condensing (densifying).

The authors are indebted to Professor L. A. Rubel for calling attention
to the fact that the error in Venkateswaran's paper can be traced to the book
of Schwartz which misstates Altman's theorem; the assertion and proof are
correct if "completely continuous" is substituted for "continuous".

Received by the editors February 11, 1974.

AMS (MOS) subject classifications (1970). Primary 47H10, 47H15; Secondary
65N25.

Key words and phrases. Continuous nonlinear operator, Altman fixed point
theorem, condensing operator, densifying operator.
REFERENCES

INSTITUTE OF MATHEMATICS, BUCHAREST, CALĂA GRIVĂTEI 21, ROMANIA