A NOTE ON LOCALLY FINITE GROUP ALGEBRAS

DANIEL R. FARKAS

ABSTRACT. We obtain an injectivity condition for group algebras which is equivalent to local finiteness.

1. Introduction. Several authors have studied the effect of various injectivity conditions on group algebras. Connell [1] showed that if the group algebra $F[G]$ is self-injective, then G is locally finite; Renault [4] improved this result by showing that G is, in fact, finite. The following question arises: what weakening of self-injectivity coincides with local finiteness? This note provides one answer.

We will say that a ring R with 1 is principally (right) self-injective if any right R-module map from a principal right ideal of R into R can be lifted to all of R. Notice that this definition is the usual Baer criterion for self-injectivity if we omit the two occurrences of the word "principal".

If M is a right R-module and S is a subset of R, then $l_M(S) = \{ m \in M | ms = 0 \ \forall s \in S \}$ is the left annihilator of S in M. Left actions give rise to right annihilators. If $R = M$ we say that a left ideal L of R is a left annihilator if $L = l_R(S)$ for some subset $S \subseteq R$; equivalently, $L = l_R(r_R(L))$. We will drop subscripts when the context is clear.

If G is a group and F is a field, then $F[G]$ will denote the set of all infinite formal sums $\sum f_g g$ with $f_g \in F$ and $g \in G$. Under pointwise addition $F[G]$ becomes a right $F[G]$-module containing $F[G]$.

Finally we can state our result.

Theorem. The following properties are equivalent:
2. G is locally finite.
4. Every principal left ideal of $F[G]$ is an annihilator.

The equivalence of 2 and 4 is of particular interest. It might be regarded as a first approximation to the following longstanding conjecture: if every element of $F[G]$ is a zero-divisor or invertible then G is locally finite.

2. A proof. Crucial to all proofs of local finiteness is

Lemma [3, p. 105]. Let g_1, \ldots, g_n be a finite number of elements of G, and let $H = \langle g_1, \ldots, g_n \rangle$ be the subgroup of G they generate. Then

$$\{ r \in F[G] | (g_i - 1)r = 0 \text{ for } i = 1, \ldots, n \} = \begin{cases} 0 & \text{if } H \text{ is infinite,} \\ \left(\sum_{h \in H} b \right) F[G] & \text{if } H \text{ is finite.} \end{cases}$$

We proceed to the Theorem:

$1 \Rightarrow 2$. It suffices to prove that $< H, x >$ is finite whenever H is a finite subgroup of G and $x \in G$. (One can then argue local finiteness by inducting on the number of generators of a finitely generated subgroup of G.) Set $s = \sum_{b \in H} h$. The Lemma shows either $< H, x >$ is finite or $(x - 1)s a = 0 \Rightarrow sa = 0 \forall a \in F[G]$. In the latter case the $F[G]$-map $\phi: (x - 1)s F[G] \rightarrow F[G]$ given by $((x - 1)sa)\phi = sa$ is well defined. By hypothesis $3 d \in F[G] \Rightarrow (x - 1)s \phi = d(x - 1)s$, i.e. $(1 - d(x - 1))s = 0$. Since both $d(x - 1)$ and any annihilator of s are in the augmentation ideal of $F[G]$, 1 is in the augmentation ideal, a contradiction. Thus $< H, x >$ is finite.

$2 \Rightarrow 3$. Let t_i, v_i be a left transversal for the finite subgroup $< \text{supp } a > = H$ in G. If $\sum_{t_i \in H} a \in F[G]$ with $b_i \in F[H]$ then $S = \{ i \in | b_i \cdot a \neq 0 \}$ is finite. Since H is finite, $\sum_{t_i \in H} a \in F[G] \Rightarrow < \sum_{t_i \in H} b_i \cdot a > = (\sum_{t_i \in H} b_i) \cdot a$.

$3 \Rightarrow 4$. It is enough to show that $l_{F[H]}(r_{F[G]}(a)) = F[G]a$. The inclusion "$\supseteq\" is trivial. If b is in the double annihilator then the F-linear map $\tau: aF[G] \rightarrow F$ given by $\tau(ar) = tr(br)$ is well defined. (Here, tr of an element in $F[G]$ denotes the coefficient of 1.) Lift τ to an F-linear map on $F[G]$. Writing $a = \sum h a_h b$, a finite sum, we have

$$b = \sum_{g \in G} tr(b g^{-1}) g = \sum_{g} tr(a g^{-1}) g = \sum_{g} \left(\sum_{h} a_h b g^{-1} \right) g$$

$$= \sum_{h} \left(\sum_{g} a_h tr(b g^{-1}) \right) g = \sum_{h} \left(\sum_{g} tr(b g^{-1}) g^{-1} \right) a_h b = \left(\sum_{g \in G} tr(y^{-1}) y \right) a \in F[G]a.$$

$4 \Rightarrow 1$. It is easy to see that any ring R is principally right self-injective iff for each $a \in R$, $Ra = l(r(a))$ [2, Theorem 1].
REFERENCES

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154