The product formula for Stiefel-Whitney homology classes
HTML articles powered by AMS MathViewer
- by Stephen Halperin and Domingo Toledo
- Proc. Amer. Math. Soc. 48 (1975), 239-244
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365584-6
- PDF | Request permission
Abstract:
We give a combinatorial proof of the formula for the Stiefel-Whitney homology classes of the product of two Euler spaces. Some relevant facts on ordered triangulations are also included.References
- Ethan Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. 205 (1975), 341–359. MR 358829, DOI 10.1090/S0002-9947-1975-0358829-4
- Stephen Halperin and Domingo Toledo, Stiefel-Whitney homology classes, Ann. of Math. (2) 96 (1972), 511–525. MR 312515, DOI 10.2307/1970823
- D. Sullivan, Combinatorial invariants of analytic spaces, Proceedings of Liverpool Singularities—Symposium, I (1969/70), Lecture Notes in Mathematics, Vol. 192, Springer, Berlin, 1971, pp. 165–168. MR 0278333
- Hassler Whitney, On the theory of sphere-bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148–153. MR 1338, DOI 10.1073/pnas.26.2.148
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 239-244
- MSC: Primary 57C25; Secondary 57D20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365584-6
- MathSciNet review: 0365584