ON THE NUMBER OF COPRIME SOLUTIONS OF \(y^2 = x^3 + k \)

N. M. STEPHENS

ABSTRACT. Let \(N'(k) \) denote the number of coprime integer solutions \(x, y \) of \(y^2 = x^3 + k \). It is shown that \(\limsup_{k \to -\infty} N'(k) \geq 8 \) and that \(\limsup_{k \to -\infty} N'(k) > 12 \).

1. Let \(N'(k) \) denote the number of coprime integer solutions \(x, y \) of the equation

\[
y^2 = x^3 + k.
\]

Mohanty [2] has proved that \(\limsup_{k \to -\infty} N'(k) \geq 6 \) by showing that the equation

\[
y^2 = x^3 + (t^6 - 6t^3 + 1)
\]

has six solutions \(x, y \in \mathbb{Z}[t] \) (\(\mathbb{Z} \) denotes the ring of integers). These are the three solutions \(P_1, P_2, P_3 \) where

\[
P_1 : x = 2, \quad y = t^3 - 3,
\]

\[
P_2 : x = 2t, \quad y = t^3 + 1,
\]

\[
P_3 : x = 2t^2, \quad y = 3t^3 - 1,
\]

and \(-P_1, -P_2, -P_3 \) where \(-P_i = (x, -y) \). If \(t \) is even integer, each pair \(x, y \) is coprime and hence \(N'(t^6 - 6t^3 + 1) \geq 6 \).

2. We can consider (2) as an elliptic curve \(E \) over the function field \(\mathbb{Q}(t) \) (\(\mathbb{Q} \) is the field of rational numbers) on which there is an additive law. If \((x_1, y_1) \) and \((x_2, y_2) \) are two distinct points on \(E \), their sum \((x', y') \) is given by

\[
x' = \left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2, \quad -y' = \left(\frac{y_2 - y_1}{x_2 - x_1} \right) (x' - x_1) + y_1.
\]

The \(x, y \) coordinates for \(P_i \pm P_j, \ 1 \leq i < j \leq 3 \), are given below:

Received by the editors December 18, 1973.

Copyright © 1975, American Mathematical Society
If \(t \) is an integer, the \(x, y \) coordinates of \(P_1 - P_2 \) are coprime. Hence, for general even values of \(t \), there are at least eight distinct coprime solutions of (2) and so

Lemma 1. \(\limsup_{k \to \infty} N'(k) \geq 8. \)

Let \(k(t) = t^6 - 6t^3 + 1. \) From above it follows that

\[
\gamma(t)^2 = x(t)^3 + k(t)
\]

has six solutions \((\pm P_1, \pm P_2, \pm P_3)\) with \(\deg(x) \leq 2 \) and \(\deg(y) \leq 3 \); and that

\[
\gamma(t)^2 = x(t)^3 + (t - 1)^6k(t)
\]

has six solutions (corresponding to \(\pm (P_1 + P_2), \pm (P_1 + P_3), \pm (P_2 - P_3) \)) with \(\deg(X) \leq 4 \) and \(\deg(Y) \leq 6. \) Consider now the effect of replacing \(t \) by \(1 + 1/t. \)

From (3), if \(x'(t) = t^2x(1 + 1/t) \) and \(y'(t) = t^3y(1 + 1/t), \) then

\[
y'(t)^2 = x'(t)^3 + k'(t)
\]

where \(k'(t) = t^6k(1 + 1/t). \) From (4), if \(X'(t) = t^4X(1 + 1/t), \ Y'(t) = t^6Y(1 + 1/t) \) and for the same \(k'(t) \)

\[
Y'(t)^2 = X'(t)^3 + k'(t).
\]

It follows that we have 12 solutions \(x(t), y(t) \in Z[t] \) of the equation

\[
y^2 = x^3 + (-4t^6 - 12t^5 - 3t^4 + 14t^3 + 15t^2 + 6t + 1).
\]

These are:

\[
\begin{align*}
Q_1 & : 2t^2 & & -2t^3 + 3t^2 + 3t + 1 \\
Q_2 & : 2t^2 + 2t & & 2t^3 + 3t^2 + 3t + 1 \\
Q_3 & : 2t^2 + 4t + 2 & & 2t^3 + 9t^2 + 9t + 3 \\
Q_1 + Q_2 & : 4t^4 - 4t^2 - 2t & & -(8t^6 - 12t^4 + 6t^3 + 3t^2 + 3t + 1) \\
Q_1 + Q_3 & : t^4 + 2t^3 - t^2 - 2t - 1 & & -(t^6 + 3t^5 - 9t^3 - 3t^2) \\
Q_2 - Q_3 & : 4t^4 + 16t^3 + 20t^2 + 10t + 2 & & -(8t^6 + 48t^5 + 108t^4 + 118t^3 + 69t^2 + 21t + 3)
\end{align*}
\]
To check that the solutions $x(t), y(t)$ are coprime for all integers t, Euclid’s algorithm may be applied. For example, for $Q_1 + Q_2$:

$$8t^6 - 12t^4 - 6t^3 + 3t^2 + 3t + 1 = (2t^2 - 1)(4t^4 - 4t^2 - 2t) + (-2t^3 - t^2 + t + 1),$$

$$4t^4 - 4t^2 - 2t = (-2t + 1)(-2t^3 - t^2 + t + 1) + (-t^2 - t - 1),$$

$$-2t^3 - t^2 + t + 1 = (2t - 1)(-t^2 - t - 1) + 2t.$$

Thus, if, for some integer t, $d | x(t)$ and $d | y(t)$, then $d | 2t$. But $y(t)$ is odd and coprime to t, so $d = 1$. The other cases may be checked in a similar fashion.

Hence, for an infinite family of k there are 12 coprime solutions of (1). Since all but a finite number of these k are negative, it follows that:

Lemma 2. $\lim \sup_{k \to -\infty} N(k) \geq 12$.

3. If $k(t)$ is a real sextic polynomial with distinct roots, then, by [1], there are at most eight real solutions $x(t), y(t)$ of equation (1) with $\deg(x) \leq 2$ and $\deg(y) \leq 3$. Mohanty’s solutions illustrate that six of these real solutions can lie in $\mathbb{Z}[i]$, but it remains an open question whether there exists such a k for which there are eight solutions in $\mathbb{Z}[i]$. Of the author’s 12 solutions for Lemma 2, only six have the required restrictions on the degree.

The author expresses his thanks to the referee for the information in [1].

REFERENCES

MATHMATICS INSTITUTE, UNIVERSITY COLLEGE, CARDIFF, WALES