On the number of coprime solutions of $y^2 = x^3 + k$
HTML articles powered by AMS MathViewer
- by N. M. Stephens
- Proc. Amer. Math. Soc. 48 (1975), 325-327
- DOI: https://doi.org/10.1090/S0002-9939-1975-0357320-4
- PDF | Request permission
Abstract:
Let $N’(k)$ denote the number of coprime integer solutions $x,y$ of ${y^2} = {x^3} + k$. It is shown that $\lim {\sup _{k \to \infty }}N’(k) \geq 8$ and that $\lim {\sup _{k \to - \infty }}N’(k) \geq 12$.References
- D. Johnson, unpublished.
- S. P. Mohanty, A note on Mordell’s equation $y^{2}=x^{3}+k$, Proc. Amer. Math. Soc. 39 (1973), 645–646. MR 316377, DOI 10.1090/S0002-9939-1973-0316377-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 325-327
- MSC: Primary 10B10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0357320-4
- MathSciNet review: 0357320