A geometric characterization of Fréchet spaces with the Radon-Nikodým property
HTML articles powered by AMS MathViewer
- by G. Y. H. Chi
- Proc. Amer. Math. Soc. 48 (1975), 371-380
- DOI: https://doi.org/10.1090/S0002-9939-1975-0357730-5
- PDF | Request permission
Abstract:
Let $F$ be a locally convex Fréchet space. $F$ is said to have the Radon-Nikodym property if for every positive finite measure space $(\mathbf {\Omega ,\Sigma },\mu )$, and every $\mu$-continuous vector measure $m:\mathbf {\Sigma } \to F$ of bounded variation, there exists an integrable function $f:\Omega \to F$ such that $m(S) = \int _S {f(\omega )d\mu (\omega )}$, for every $S \in \mathbf {\Sigma }$. Maynard proved that a Banach space has the Radon-Nikodym property iff it is an $s$-dentable space. It is the purpose of this paper to give the following analogous characterization: A Fréchet space $F$ has the Radon-Nikodym property iff $F$ is $s$-dentable.References
- G. Y. H. Chi, The Radon-Nikodým theorem for vector measures with values in the duals of some nuclear spaces, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 85–95. MR 0341083 —, The Radon-Nikodym theorems for Fréchet spaces (preprint).
- N. Dinculeanu, On regular vector measures, Acta Sci. Math. (Szeged) 24 (1963), 236–243. MR 176024
- N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505–512. MR 214722, DOI 10.1112/plms/s3-17.3.505
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- Steven A. Gaal, Point set topology, Pure and Applied Mathematics, Vol. XVI, Academic Press, New York-London, 1964. MR 0171253 D. R. Lewis, On the Radon-Nikodym theorem (preprint).
- Hugh B. Maynard, A Radon-Nikoým theorem for operator-valued measures, Trans. Amer. Math. Soc. 173 (1972), 449–463. MR 310187, DOI 10.1090/S0002-9947-1972-0310187-4 —, A geometric characterization of Banach spaces having the Radon-Nikodym property (preprint); cf., Trans. Amer. Math. Soc. 173 (1972), 449-463.
- I. Namioka, Neighborhoods of extreme points, Israel J. Math. 5 (1967), 145–152. MR 221271, DOI 10.1007/BF02771100
- M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466–487. MR 222245, DOI 10.1090/S0002-9947-1968-0222245-2
- M. A. Rieffel, Dentable subsets of Banach spaces, with application to a Radon-Nikodým theorem, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 71–77. MR 0222618
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 371-380
- DOI: https://doi.org/10.1090/S0002-9939-1975-0357730-5
- MathSciNet review: 0357730