## A geometric characterization of Fréchet spaces with the Radon-Nikodým property

HTML articles powered by AMS MathViewer

- by G. Y. H. Chi PDF
- Proc. Amer. Math. Soc.
**48**(1975), 371-380 Request permission

## Abstract:

Let $F$ be a locally convex Fréchet space. $F$ is said to have the*Radon-Nikodym*property if for every positive finite measure space $(\mathbf {\Omega ,\Sigma },\mu )$, and every $\mu$-continuous vector measure $m:\mathbf {\Sigma } \to F$ of bounded variation, there exists an integrable function $f:\Omega \to F$ such that $m(S) = \int _S {f(\omega )d\mu (\omega )}$, for every $S \in \mathbf {\Sigma }$. Maynard proved that a Banach space has the Radon-Nikodym property iff it is an $s$-dentable space. It is the purpose of this paper to give the following analogous characterization: A Fréchet space $F$ has the Radon-Nikodym property iff $F$ is $s$-dentable.

## References

- G. Y. H. Chi,
*The Radon-Nikodým theorem for vector measures with values in the duals of some nuclear spaces*, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 85–95. MR**0341083**
—, - N. Dinculeanu,
*On regular vector measures*, Acta Sci. Math. (Szeged)**24**(1963), 236–243. MR**176024** - N. Dinculeanu and I. Kluvanek,
*On vector measures*, Proc. London Math. Soc. (3)**17**(1967), 505–512. MR**214722**, DOI 10.1112/plms/s3-17.3.505 - N. Dinculeanu,
*Vector measures*, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR**0206189** - Steven A. Gaal,
*Point set topology*, Pure and Applied Mathematics, Vol. XVI, Academic Press, New York-London, 1964. MR**0171253**
D. R. Lewis, - Hugh B. Maynard,
*A Radon-Nikoým theorem for operator-valued measures*, Trans. Amer. Math. Soc.**173**(1972), 449–463. MR**310187**, DOI 10.1090/S0002-9947-1972-0310187-4
—, - I. Namioka,
*Neighborhoods of extreme points*, Israel J. Math.**5**(1967), 145–152. MR**221271**, DOI 10.1007/BF02771100 - M. A. Rieffel,
*The Radon-Nikodym theorem for the Bochner integral*, Trans. Amer. Math. Soc.**131**(1968), 466–487. MR**222245**, DOI 10.1090/S0002-9947-1968-0222245-2 - M. A. Rieffel,
*Dentable subsets of Banach spaces, with application to a Radon-Nikodým theorem*, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 71–77. MR**0222618** - Helmut H. Schaefer,
*Topological vector spaces*, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR**0193469**

*The Radon-Nikodym theorems for Fréchet spaces*(preprint).

*On the Radon-Nikodym theorem*(preprint).

*A geometric characterization of Banach spaces having the Radon-Nikodym property*(preprint); cf., Trans. Amer. Math. Soc.

**173**(1972), 449-463.

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**48**(1975), 371-380 - DOI: https://doi.org/10.1090/S0002-9939-1975-0357730-5
- MathSciNet review: 0357730