The Kline 2-sphere characterization—by definition
HTML articles powered by AMS MathViewer
- by Richard Slocum
- Proc. Amer. Math. Soc. 48 (1975), 491-498
- DOI: https://doi.org/10.1090/S0002-9939-1975-0358780-5
- PDF | Request permission
Abstract:
Brick partitionings are used repeatedly to prove, by definition, the classical Kline $2$-sphere characterization.References
- R. H. Bing, The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644–653. MR 16645, DOI 10.1090/S0002-9904-1946-08614-0
- R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101–1110. MR 35429, DOI 10.1090/S0002-9904-1949-09334-5
- R. H. Bing, Complementary domains of continuous curves, Fund. Math. 36 (1949), 303–318. MR 38063, DOI 10.4064/fm-36-1-303-318
- Richard Slocum, Using brick partitionings to establish conditions which insure that a Peano continuum is a $2$-cell, a $2$-sphere or an annulus, Pacific J. Math. 42 (1972), 763–775. MR 321036
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
- Gail S. Young Jr., A characterization of $2$-manifolds, Duke Math. J. 14 (1947), 979–990. MR 23061
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 491-498
- DOI: https://doi.org/10.1090/S0002-9939-1975-0358780-5
- MathSciNet review: 0358780