LINEAR RECURRENTS AND UNIFORM DISTRIBUTION

MELVYN B. NATHANSON

ABSTRACT. A necessary and sufficient condition is obtained for the uniform distribution modulo \(p \) of a sequence of integers satisfying a linear recurrence relation.

Let \(A = \{a_n \}_{n=1}^{\infty} \) be an infinite sequence of integers. For integers \(m \geq 2 \) and \(r \), let \(A(N, r, m) \) denote the number of terms \(a_n \) such that \(n \leq N \) and \(a_n \equiv r \pmod{m} \). If

\[
\lim_{N \to \infty} \frac{A(N, r, m)}{N} = \frac{1}{m}
\]

for \(r = 0, 1, \ldots, m-1 \), then the sequence \(A \) is uniformly distributed modulo \(m \). The sequence \(A \) is uniformly distributed if \(A \) is uniformly distributed modulo \(m \) for all \(m \geq 2 \).

Kuipers, Niederreiter, and Shiue \([1],[2],[4]\) have proved that the Fibonacci numbers are uniformly distributed modulo \(m \) only for \(m = 5^k \), and that the Lucas numbers are not uniformly distributed modulo \(m \) for any \(m \geq 2 \). Both the Lucas and Fibonacci numbers satisfy the linear recurrence \(x_n +2 = ax_{n+1} + bx_n \). In this note we consider the uniform distribution of an arbitrary linearly recurrent sequence of integers.

Theorem 1. Let \(X = \{x_n \}_{n=1}^{\infty} \) be a sequence of integers satisfying the linear recurrence \(x_{n+2} = ax_{n+1} + bx_n \). Let \(p \) be an odd prime. Then the sequence \(X \) is uniformly distributed modulo \(p \) if and only if \(p \nmid (a^2 + 4b) \), \(p \nmid a \), and \(p \nmid (2x_2 - ax_1) \). The sequence \(X \) is uniformly distributed modulo \(2 \) if and only if \(2 \mid a \), \(2 \nmid b \), and \(2 \nmid (x_2 - x_1) \).

Proof. The linearly recurrent sequence \(X \) is periodic modulo \(p \). If the period of \(X \) is not divisible by \(p \), then \(X \) is certainly not uniformly distributed modulo \(p \). Zierler \([5]\) showed that if \(p \nmid (a^2 + 4b) \), then the period of \(X \) is relatively prime to \(p \). If \(p \mid (a^2 + 4b) \) and \(p \mid a \), then \(p \mid b \), and so \(x_n \equiv 0 \pmod{p} \) for all \(n \geq 3 \). If \(p \nmid (a^2 + 4b) \) and \(p \nmid a \), then

Presented to the Society, January 16, 1974 under the title Uniform distribution and linear recurrences; received by the editors February 4, 1974.

Key words and phrases. Uniform distribution, recurrence sequences, linear recurrences, Hasse principle.

Copyright © 1975, American Mathematical Society
\[x_n \equiv \frac{2}{a^2} (2x_2 - ax_1)^n \left(\frac{a}{2} \right)^n - \frac{4}{a^2} (x_2 - ax_1) \left(\frac{a}{2} \right)^n \pmod{p}. \]

If \(p | (2x_2 - ax_1) \), then \(x_n \equiv t(a/2)^n \pmod{p} \) for some constant \(t \). Either \(t \equiv 0 \pmod{p} \), or the period of \(X \) is the exponent \(e \) of \(a/2 \) modulo \(p \). But \(e \) is not divisible by \(p \). Therefore, if \(X \) is uniformly distributed modulo \(p \), then \(p | (a^2 + 4b) \), \(p \nmid a \), and \(p \nmid (2x_2 - ax_1) \).

Conversely, suppose that \(X \) satisfies these three conditions. Let \(A \equiv a/2 \pmod{p} \), and let \(e \) be the exponent of \(A \) modulo \(p \). By (*) there are constants \(s \) and \(t \) such that \(p \nmid s \) and \(x_n \equiv (sn + t) A^n \pmod{p} \) for all \(n \geq 1 \). This sequence has period \(ep \) modulo \(p \). To show that \(X \) is uniformly distributed modulo \(p \), it suffices to show that each distinct residue modulo \(p \) occurs exactly \(e \) times among the first \(ep \) terms of the sequence \(X \).

Imagine these \(ep \) terms written in a matrix with \(e \) rows and \(p \) columns. For \(i = 0, 1, \ldots, e - 1 \) and \(j = 1, 2, \ldots, p \), let the \((i, j)\)th component of this matrix be \(x_{ip + j} \). The \(j \)th column of the matrix consists of the \(e \) elements \(x_{ip + j} \) with \(i = 0, 1, \ldots, e - 1 \). But

\[x_{ip + j} \equiv (s(ip + j) + t)A^{ip + j} \equiv (sj + t)A^{j-i} \pmod{p}. \]

The set \(\{A^{j-i} \}_{i=0}^{i=e-1} \) contains precisely the \(e \) residues \(\{A^{j-i} \}_{i=0}^{i=e-1} \), and so the \(j \)th column of the matrix can be rearranged so that its \((i, j)\)th entry is now \((sj + t)A^i\). Consider the \(i \)th row. It now consists of the \(p \) residues \((sj + t)A^i\) for \(j = 1, 2, \ldots, p \). Since \(s \equiv 0 \pmod{p} \), these residues are distinct modulo \(p \), and so each row of the rearranged matrix contains a complete system of residues modulo \(p \). That is, each residue modulo \(p \) occurs exactly \(e \) times in the first \(ep \) elements of the sequence \(X \).

This proves the theorem for odd primes. The case \(p = 2 \) is trivial.

Theorem 2 (Hasse principle). Let \(X = \{x_n\}_{n=1}^{\infty} \) satisfy the linear recurrence \(x_{n+2} = ax_{n+1} + bx_n \). Then \(X \) is uniformly distributed if and only if \(X \) is uniformly distributed modulo \(p \) for all primes \(p \).

Proof. If \(X \) is uniformly distributed modulo \(p \) for all primes \(p \), then \(p | (a^2 + 4b) \) for all \(p \), and so \(a^2 + 4b = 0 \). Since \(a \) and \(b \) are relatively prime, it follows that \(b = -1 \) and \(a = \pm 2 \). If \(a = 2 \), then \(X \) is the arithmetic progression \(x_n = (n-1)(x_2 - x_1) + x_1 \), where \(x_2 - x_1 = \pm 1 \). If \(n = -2 \), then \(X \) is the sequence \(x_n = (-1)^n[(n-1)(x_2 + x_1) - x_1] \), where \(x_2 + x_1 = \pm 1 \). In both cases, \(X \) is uniformly distributed.

The converse is trivial.

Remark. The sequence \(X \) is \(p \)-adically uniformly distributed if \(X \) is uniformly distributed modulo \(p \) for all primes \(p \) and \(p \nmid a \).
distributed modulo p^k for all $k \geq 1$. We can prove, by the method of [3],
[4], the following "Hensel's lemma": If the linearly recurrent sequence X
is uniformly distributed modulo p^2, then X is p-adically uniformly distributed.
R. T. Bumby has obtained similar results.

REFERENCES

1. L. Kuipers and J. S. Shiue, *A distribution property of the sequence of Lucas
 numbers*, Elem. Math. 27 (1972), 10–11. MR 46 #144.

2. ———, *A distribution property of the sequence of Fibonacci numbers*,
 Fibonacci Quart. 10 (1972), no. 4, 375–376, 392. MR 47 #3302.

3. ———, *A distribution property of a linear recurrence of the second order*,

4. H. Niederreiter, *Distribution of Fibonacci numbers mod 5^k*, Fibonacci Quart.
 10 (1972), no. 4, 373–374. MR 47 #3303.