A sequence-to-function analogue of the Hausdorff means for double sequences: the $[J,$ $f(x, y)]$ means
HTML articles powered by AMS MathViewer
- by Mourad El-Houssieny Ismail
- Proc. Amer. Math. Soc. 48 (1975), 403-408
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364942-3
- PDF | Request permission
Abstract:
In this paper we extend the Jakimovski $[J,f(x)]$ means to double sequences. We call the new means the $[J,f(x,y)]$ means. We characterize such $f$’s that give rise to regular and to totally regular $[J,f(x,y)]$ means. We also give a necessary and sufficient condition for representability of a function $f(x,y)$ as a double Laplace transform with a determining function of bounded variation in two variables.References
- Dorothy L. Bernstein, The double Laplace integral, Duke Math. J. 8 (1941), 460–496. MR 4649
- T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. (2) 34 (1933), no. 2, 317–328. MR 1503109, DOI 10.2307/1968205
- Henry Hurwitz Jr., Total regularity of general transformations, Bull. Amer. Math. Soc. 46 (1940), 833–837. MR 2646, DOI 10.1090/S0002-9904-1940-07310-0
- Amnon Jakimovski, The sequence-to-function analogues to Hausdorff transformations, Bull. Res. Council Israel Sect. F 8F (1960), 135–154 (1960). MR 126095
- G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), no. 1, 50–73. MR 1501332, DOI 10.1090/S0002-9947-1926-1501332-5
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- David V. Widder, Advanced calculus, Prentice Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961. 2nd ed. MR 0122921
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 403-408
- MSC: Primary 40G05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0364942-3
- MathSciNet review: 0364942