A SEQUENCE-TO-FUNCTION ANALOGUE
OF THE HAUSDORFF MEANS FOR DOUBLE SEQUENCES:
THE \([J, f(x, y)]\) MEANS

MOURAD EL-HOUSSIENY ISMAIL

ABSTRACT. In this paper we extend the Jakimovski \([J, f(x)]\) means to double sequences. We call the new means the \([J, f(x, y)]\) means. We characterize such \(f\)'s that give rise to regular and to totally regular \([J, f(x, y)]\) means. We also give a necessary and sufficient condition for representability of a function \(f(x, y)\) as a double Laplace transform with a determining function of bounded variation in two variables.

1. Introduction. Let \(f(x, y)\) be a real function of two real variables \(x, y\) that has partial derivatives of all orders. The \([J, f(x, y)]\) limit of a double sequence \(s_{m,n}\) is

\[
\lim_{x \to \infty, y \to \infty} t(x, y),
\]

if it exists, where

\[
t(x, y) = \sum_{m, n=0}^{\infty} (-1)^{m+n} \frac{x^m y^n}{m! n!} \frac{\partial^{m+n}f}{\partial x^m \partial y^n} s_{m,n},
\]

provided that the right-hand side of (1.1) is defined for \(x \geq 0\) and \(y \geq 0\). We shall denote the first quadrant \(\{(x, y) : x \geq 0, y \geq 0\}\) by \(Q\).

Let \(\alpha(x, y)\) be defined and finite in a rectangle \(U = [a, b] \times [c, d]\), and let \(a = x_0 < x_1 < \cdots < x_m = b\) and \(c = y_0 < y_1 < \cdots < y_n = d\). The double increment of \(\alpha\), say \(\Delta(\alpha; x_{i+1}, y_{j+1}; x_i, y_j)\), is

\[
\Delta(\alpha; x_{i+1}, y_{j+1}; x_i, y_j) = \alpha(x_{i+1}, y_{j+1}) - \alpha(x_{i+1}, y_j) - \alpha(x_i, y_{j+1}) + \alpha(x_i, y_j).
\]

The second variation of \(\alpha\) on \(U\), say \(V_U[\alpha]\), is

\[
\Delta(\alpha; x_{i+1}, y_{j+1}; x_i, y_j) = \alpha(x_{i+1}, y_{j+1}) - \alpha(x_{i+1}, y_j) - \alpha(x_i, y_{j+1}) + \alpha(x_i, y_j).
\]

Presented to the Society, December 13, 1972; received by the editors December 14, 1972.

AMS (MOS) subject classifications (1970). Primary 40B05; Secondary 40G05, 44A30.

Key words and phrases. Jakimovski's \([J, f(x)]\) means, regular and totally regular \([J, f(x, y)]\) means, Laplace transforms in two variables.
where the supremum is taken over all partitions of U. If $V_U[\alpha]$ is finite one says that $\alpha(x, y)$ is of bounded variation on U. The Stieltjes integral of a function of two real variables is defined similar to the Stieltjes integral of a function of a single real variable. We can always normalize $\alpha(x, y)$ by assuming $\alpha(x, c) = 0$, $a \leq x \leq b$, $\alpha(a, y) = 0$, $c \leq y \leq d$.

Integration over the infinite rectangle Q is defined by

$$\int_Q f(x, y) d\alpha(x, y) = \lim_{X \to \infty, Y \to \infty} \int_{(0, 0)}^{(X, Y)} f(x, y) d\alpha(x, y).$$

In this paper we prove the following characterizations of regular and totally regular $[J, f(x, y)]$ means.

Theorem 1. The $[J, f(x, y)]$ means are regular if and only if there exists a (normalized) function $\alpha(x, y)$ of bounded variation on Q such that

$$f(x, y) = \int_Q e^{-xu-uy} d\alpha(u, v),$$

with

$$\int_Q d\alpha(u, v) = 1.$$

Theorem 2. The $[J, f(x, y)]$ means are totally regular if and only if the function $\alpha(u, v)$ of Theorem 1 satisfies

(i) $\Delta(\alpha; x_{i+1}, y_{j+1}; x_i, y_j) \geq 0$,

(ii) $\alpha(x', y) \leq \alpha(x'', y)$, $\alpha(x', y') \leq \alpha(x, y'')$ for all $(x, y) \in Q$ with $0 \leq x' < x'', 0 \leq y' < y'' < \infty$.

In §2 we prove the above theorems. In §3 we end the paper by some concluding remarks and characterize real functions $f(x, y)$ that are representable as Laplace transforms, i.e. satisfy (1.2) with $\alpha(u, v)$ of bounded variation on Q.

2. Regularity and total regularity of the $[J, f(x, y)]$ means. G. M. Robison [5] proved that a sequence-to-function transform T defined by

$$t(x, y) = \sum_{m,n=0}^{\infty} a_{m,n}(x)s_{m,n},$$

where the T-limit of a double sequence $\{s_{m,n}\}$ is

$$\lim_{(x,y) \to (u,v)} t(x, y)$$

attributable to Mourad El-Housseny Ismail.
(with \((u, v)\) finite or infinite), is regular if and only if

(a) \(\lim_{(x, y)\to (u, v)} a_{m, n}(x, y) = 0\) for each \(m\) and \(n\);
(b) there exists a finite constant \(A\) such that
\[
\sum_{m, n=0}^{\infty} |a_{m, n}(x, y)| < A \quad \text{for all} \quad (x, y);
\]
(c) \(\lim_{(x, y)\to (u, v)} \sum_{m, n=0}^{\infty} a_{m, n}(x, y) = 1\);
(d) \(\lim_{(x, y)\to (u, v)} \sum_{m=0}^{\infty} |a_{m, n}(x, y)| = 0\) for all \(n\), and
(e) \(\lim_{(x, y)\to (u, v)} \sum_{n=0}^{\infty} |a_{m, n}(x, y)| = 0\) for all \(m\).

For definitions of regular and totally regular transformations on double sequences, see [5, p. 53]. In particular, note that regularity of a transformation is constructed with regard to convergent bounded sequences.

Proof of Theorem 1. Suppose that (1.2) and (1.3) are satisfied. Then by [1, p. 474]
\[
(2.1) \quad \frac{\partial^{m+n} f(x, y)}{\partial x^m \partial y^n} = \int_Q e^{-u_x - v_y}(-u)^m(-v)^n d\alpha(u, v)
\]
and conditions (a) through (e) follow by an easy application of the dominated convergence theorem.

Conversely assume that the \([f, f(x, y)]\) means are regular. Let
\[
(2.2) \quad L_{k, l, s, \beta, \beta}[f] = \frac{(-1)^{k+l}}{k! l!} \frac{\partial^{k+l} f(x, y)}{\partial x^k \partial y^l} \left| \begin{array}{lcl} \frac{k}{s} & \frac{l}{t} \\ x & y \end{array} \right| \frac{(x, y)}{\alpha(x, y)}.
\]
I claim that there exists a constant \(M\) such that
\[
(2.3) \quad \int_Q |L_{k, l, s, \beta, \beta}[f]| ds dt < M \quad \text{for all} \quad k \geq 0 \quad \text{and all} \quad l \geq 0.
\]
This may be proved as follows. Condition (b) implies
\[
\sum_{m, n=0}^{\infty} \left| \frac{\partial^{m+n} f(x, y)}{\partial x^m \partial y^n} \right| \frac{x^m y^n}{m! n!} < A \quad \text{for all} \quad (x, y) \in Q.
\]
Using Taylor's formula in two variables (e.g. [7, p. 45]) one can easily show that the remainder in the Taylor series of \(\frac{\partial^{k+l} f(u, v)}{\partial u^k \partial v^l}\) about any point \((a, b)\) tends to zero, so that
\[
\frac{\partial^{k+l} f(u, v)}{\partial u^k \partial v^l} = \sum_{m, n=0}^{\infty} \frac{(u-a)^m (v-b)^n}{m! n!} \frac{\partial^{m+l+k+n}}{\partial a^{m+k} \partial b^{n+l}} f(a, b),
\]
and hence
\[
\int_{(k/a, l/b)}^{(\infty, \infty)} |L_{k,l,s,t}[f]| ds \, dt = \int_{(0,0)}^{(a,b)} \left| \frac{\partial^{k+l}f(u, v)}{\partial u^k \partial v^l} \right| \frac{u^{k-1}}{(k-1)!} \frac{v^{l-1}}{(l-1)!} \, du \, dv
\]
\[
\leq \sum_{m,n=0}^{\infty} \left| \frac{\partial^{m+l+n+k}}{\partial a^m b^n} f(a, b) \right| \int_{(a,b)}^{(0,0)} \frac{u^{k-1}(a-u)^m v^{l-1}(b-v)^n}{(k-1)! m!(l-1)!} \, du \, dv
\]
\[
\leq \sum_{m,n=0}^{\infty} \frac{a^m}{m!} \frac{b^n}{n!} \left| \frac{\partial^{m+n}f(a, b)}{\partial a^m \partial b^n} \right| < A,
\]
which proves (2.3).

The next step is to notice that

\[(2.4) \quad \lim_{k, l \to \infty} \int_{Q} e^{-xu-uy} L_{k,l,u,v}[f] \, du \, dv = f(x, y), \]

whose proof is similar to the proof of Theorem 11a on p. 303 of [6]. In fact, (2.2) and \(\lim_{(x,y) \to \infty} f(x, y) = 0 \) (by (d)) is all that is required.

Now, set

\[\alpha_{k,l}(s, t) = \int_{(0,0)}^{(s,t)} L_{k,l,u,v}[f] \, du \, dv. \]

The functions \(\alpha_{k,l}(s, t) \) are of uniformly bounded variation by (2.3). By Helly's selection principle generalized to functions of bounded variation (Lemma 1 of [2]) we can find a subsequence \(\alpha_{k,l,i}(s, t) \) which converges pointwise on \(Q \) to a function \(\alpha(s, t) \) of bounded variation there. Again by Helly's theorem we have

\[(2.5) \quad \lim_{(i,j) \to \infty} \int_{Q} e^{-xu-uy} d\alpha_{k,i,l,j}(u, v) = \int_{Q} e^{-xu-uy} d\alpha(u, v) \quad (x > 0, y > 0). \]

Therefore (2.5) and (2.4) imply (1.2). In fact (2.1) is also valid, for condition (c) implies

\[(2.6) \quad \sum_{m,n=0}^{\infty} \int_{Q} e^{-xu-uy} \frac{(ux)^m (vy)^n}{m! \, n!} \, d\alpha(u, v) = 1, \]

and interchanging the summation and integration, by the dominated convergence theorem, proves (1.3).

Proof of Theorem 2. It is clear that if (i) and (ii) are satisfied then

\[(-x)^m (-y)^n \int_{Q} (-u)^m (-v)^n e^{-xu-uy} d\alpha(u, v) > 0 \]

for all \(m, n \geq 0 \) and all \(x > 0, y > 0 \), and hence the total regularity is obvious.

Conversely, let these means be totally regular. The condition
 ANALOGUE OF HAUSDORFF MEANS FOR DOUBLE SEQUENCES 407

\[
(2.7) \quad \lim_{x \to \infty, \ y \to \infty} \sum_{m,n=0}^{\infty} \left\{ \frac{x^m \ y^n}{m! \ n!} \left[\frac{\partial^{m+n}f(x, y)}{\partial x^m \partial y^n} \right] - \frac{x^m \ y^n}{m! \ n!} \left[\frac{\partial^{m+n}f(x, y)}{\partial x^m \partial y^n} \right] (-1)^{m+n} \right\} = 0
\]

is necessary. This follows by a straightforward extension of Theorem 6 of [3] to double sequences. We have seen in the proof of Theorem 1 that

\[
\int_{(0,0)}^{(\infty,\infty)} |d\alpha_k,l(u,v)| = \int_{(k/a,l/b)}^{(\infty,\infty)} |L_k,l,u,v[f]| \, du \, dv
\]

\[
\leq \sum_{m,n=0}^{\infty} \frac{a^m \ b^n}{m! \ n!} \left| \frac{\partial^{m+n}f}{\partial a^m \partial b^n} \right|.
\]

Therefore

\[
\int_{(0,0)}^{(\infty,\infty)} |d\alpha_k,l| \leq \lim_{a \to \infty ; b \to \infty} \sum_{m,n=0}^{\infty} \frac{a^m \ b^n}{m! \ n!} \left| \frac{\partial^{m+n}f}{\partial a^m \partial b^n} \right|.
\]

Therefore, by (2.7),

\[
\int_{(0,0)}^{(\infty,\infty)} |d\alpha| \leq \lim_{a \to \infty ; b \to \infty} \sum_{m,n=0}^{\infty} \frac{a^m \ b^n}{m! \ n!} \left| \frac{\partial^{m+n}f(a,b)}{\partial a^m \partial b^n} \right| (-1)^{m+n} = \int_{(0,0)}^{(\infty,\infty)} d\alpha;
\]

therefore, \(\alpha \), if normalized, satisfies the requirements of the theorem.

3. Concluding remarks. Our means, the \([J, f(x, y)] \) means, are the sequence-to-function analogues to the Hausdorff means for double sequences [2] as the \([J, f(x)] \) means of Jakimovski [4] were the sequence-to-function analogues to the ordinary Hausdorff means. As a matter of fact several of the inclusion relations between different \([J, f(x)] \)'s, and between \([J, f(x)] \) and other means, of §§5 and 6 of [4] can be extended to inclusion relations between our \([J, f(x, y)] \) and the respective means by using the same argument.

Our \([J, f(x, y)] \) means include several special well-known means for double sequences. In particular the Abel and Borel (exponential) means are indeed special \([J, f(x, y)] \) means.

Finally it might be worth pointing out that in proving Theorem 1, we have actually proved that a function \(f(x, y) \) defined on \(Q \) has the representation

\[
(3.1) \quad f(x, y) = \int_Q e^{-xu-yv}d\alpha(u,v)
\]

with \(\alpha(u, v) \) of bounded variation on \(Q \) if and only if

\[
(3.2) \quad \sum_{m,n=0}^{\infty} \frac{x^m \ y^n}{m! \ n!} \left| \frac{\partial^{m+n}f(x, y)}{\partial x^m \partial y^n} \right| \text{ is uniformly bounded for all } (x, y) \in Q,
\]
(3.3) \[
\lim_{x \to \infty} f(x, y) = 0 \quad \text{for all } y \geq 0,
\]
and

(3.4) \[
\lim_{y \to \infty} f(x, y) = 0 \quad \text{for all } x \geq 0.
\]

We note that (3.2) implies both (3.3) and (3.4). For, (3.2) implies the existence of an \(M \), independent of \((x, y) \in Q\), such that

\[
\sum_{m=0}^{\infty} \frac{x^m}{m!} \left| \frac{\partial^m f(x, y)}{\partial x^m} \right| < M \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{y^n}{n!} \left| \frac{\partial^n f(x, y)}{\partial y^n} \right| < M,
\]

so that (3.3) as well as (3.4) follow by Theorems 12a and 13 of Chapter 7 of [6]. Therefore we have proved

Theorem 3. A real function \(f(x, y) \) defined on \(Q \) has the representation (3.1) with \(\alpha(u, v) \) of bounded variation on \(Q \) if and only if (3.2) is satisfied.

Acknowledgment. I wish to thank Professor Fred Ustina of the University of Alberta for suggesting this paper's topic, for many fruitful discussions and for reading the manuscript. I also thank Professor Dany Leviatan for correcting an error in an earlier version of the present work.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA

Current address: Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706