Weak chainability of pseudocones
HTML articles powered by AMS MathViewer
- by David P. Bellamy
- Proc. Amer. Math. Soc. 48 (1975), 476-478
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365515-9
- PDF | Request permission
Abstract:
A pseudocone over $X$ is a compactification of $(0, 1]$ with remainder $X$. $S$ is a circle. A characterization of those pseudocones over $S$ which are weakly chainable is given. (A continuum is weakly chainable if and only if it is a continuous image of the pseudoarc.) Covering projections and liftings are used, and a simple geometric interpretation of the result is that a pseudocone over $S$ is weakly chainable if and only if the absolute value of the winding number of any subarc of $(0, 1]$ around $S$ is bounded by some $m > 0$.References
- D. P. Bellamy, Topological properties of compactifications of a half open interval, Ph.D. Thesis, Michigan State University, East Lansing, Mich., 1968.
- David P. Bellamy, An uncountable collection of chainable continua, Trans. Amer. Math. Soc. 160 (1971), 297–304. MR 286076, DOI 10.1090/S0002-9947-1971-0286076-X
- M. K. Fort Jr., Images of plane continua, Amer. J. Math. 81 (1959), 541–546. MR 106441, DOI 10.2307/2372912
- A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962/63), 271–282. MR 143182, DOI 10.4064/fm-51-3-271-282
- J. Mioduszewski, A functional conception of snake-like continua, Fund. Math. 51 (1962/63), 179–189. MR 144313, DOI 10.4064/fm-51-2-179-189
- Sam B. Nadler Jr. and J. Quinn, Embeddability and structure properties of real curves, Memoirs of the American Mathematical Society, No. 125, American Mathematical Society, Providence, R.I., 1972. MR 0353278
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 476-478
- MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365515-9
- MathSciNet review: 0365515