A note on the relationship between Weil and Cartier divisors
HTML articles powered by AMS MathViewer
- by James Hornell
- Proc. Amer. Math. Soc. 48 (1975), 276-280
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369360-X
- PDF | Request permission
Abstract:
Using a generalized equivalence relation, a subquotient of the group of Weil divisors is shown to be isomorphic to the group of Cartier divisors modulo linear equivalence for a reduced subscheme of a projective space over a field. A difficulty of the nonreduced case is discussed.References
- Séminaire C. Chevalley, 3ième année: 1958/59. Variétés de Picard, École Normale Supérieure, Paris, 1960 (French). MR 0157865
- James Hornell, Divisorial complete intersections, Pacific J. Math. 45 (1973), 217–227. MR 318119
- Serge Lang, Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, No. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. MR 0106225
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285
- Maxwell Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169–191. MR 48856, DOI 10.2307/1969773
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 276-280
- MSC: Primary 14C10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369360-X
- MathSciNet review: 0369360