Asymptotic behavior of perturbed autonomous linear functional differential equations
HTML articles powered by AMS MathViewer
- by Richard B. Evans
- Proc. Amer. Math. Soc. 48 (1975), 351-357
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369865-1
- PDF | Request permission
Abstract:
It is shown that certain autonomous linear functional differential equations and their perturbations satisfy a generalized type of asymptotic equivalence. An example is given.References
- F. Brauer and J. A. Nohel, The qualitative theory of ordinary differential equations, Benjamin, New York, 1969.
- Fred Brauer and James S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6 (1969), 142–153. MR 239213, DOI 10.1016/0022-0396(69)90122-3
- Kenneth L. Cooke, Linear functional differential equations of asymptotically autonomous type, J. Differential Equations 7 (1970), 154–174. MR 255944, DOI 10.1016/0022-0396(70)90130-0
- Jack K. Hale, Functional differential equations, Analytic theory of differential equations (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1970) Lecture Notes in Math., Vol. 183, Springer, Berlin, 1971, pp. 9–22. MR 0390425
- Jack K. Hale, Linear asymptotically autonomous functional differential equations, Rend. Circ. Mat. Palermo (2) 15 (1966), 331–351. MR 233044, DOI 10.1007/BF02844110
- T. G. Hallam and J. W. Heidel, The asymptotic manifolds of a perturbed linear system of differential equations, Trans. Amer. Math. Soc. 149 (1970), 233–241. MR 257486, DOI 10.1090/S0002-9947-1970-0257486-0
- T. G. Hallam, G. Ladas, and V. Lakshmikantham, On the asymptotic behavior of functional differential equations, SIAM J. Math. Anal. 3 (1972), 58–64. MR 315247, DOI 10.1137/0503006
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Junji Kato, On the existence of a solution approaching zero for functional differential equations, Proc. U.S.-Japan Seminar on Differential and Functional Equations (Minneapolis, Minn., 1967) Benjamin, New York, 1967, pp. 153–169. MR 0226150
- Junji Kato, The asymptotic equivalence of systems of functional differential equations, J. Differential Equations 1 (1965), 306–332. MR 177221, DOI 10.1016/0022-0396(65)90010-0 V. Lakshmikantham and S. Leela, Differential and integral inequalities, theory and applications, Vol. II, Academic Press, New York, 1969.
- Pavel Talpalaru, Quelques problèmes concernant l’équivalence asymptotique des systèmes différentiels, Boll. Un. Mat. Ital. (4) 4 (1971), 164–186 (French). MR 0298149
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 351-357
- MSC: Primary 34K20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369865-1
- MathSciNet review: 0369865