An extension of the Erdős-Rényi new law of large numbers
HTML articles powered by AMS MathViewer
- by Stephen A. Book
- Proc. Amer. Math. Soc. 48 (1975), 438-446
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380950-0
- PDF | Request permission
Abstract:
If ${S_n}$ is the $n$th partial sum of a sequence of independent, identically distributed random variables ${X_1},{X_2} \cdots$ such that $E({X_1}) = 0$ and $E(\exp (t{X_1})) < \infty$ for some nonempty interval of $t$’s, then, for a wide range of positive numbers $\lambda$, Erdös and Rényi (1970) showed that $\Sigma (N,[C(\lambda )\log N])$ converges with probability one to $\lambda$ as $N \to \infty$, where $\Sigma (N,K)$ is the maximum of the $N - K + 1$ averages of the form ${K^{ - 1}}({S_{n + K}} - {S_n})$ for $0 \leq n \leq N - K$, and $C(\lambda )$ is a known constant depending on $\lambda$ and the distribution of ${X_1}$. The objective of the present article is to state and prove the Erdös-Rényi theorem for the $N - K + 1$ “averages” of the form ${K^{ - 1/r}}({S_{n + K}} - {S_n})$, where $1 < r < 2$. This form of the Erdös-Rényi theorem arises from the extended form of the strong law of large numbers which asserts that, if $E(|{X_1}{|^r}) < \infty$ for some $r,1 \leq r < 2$, and $E({X_1}) = 0$, then ${n^{ - 1/r}}{S_n}$ converges with probability one to 0 as $n \to \infty$.References
- R. R. Bahadur and R. Ranga Rao, On deviations of the sample mean, Ann. Math. Statist. 31 (1960), 1015–1027. MR 117775, DOI 10.1214/aoms/1177705674
- Stephen A. Book, The Erdős-Rényi new law of large numbers for weighted sums, Proc. Amer. Math. Soc. 38 (1973), 165–171. MR 310946, DOI 10.1090/S0002-9939-1973-0310946-4 H. Cramér, Sur un nouveau théoreme-limite de la théorie des probabilités, Actualités Sci. Indust., no. 736, Hermann, Paris, 1938, pp. 5-23.
- Paul Erdős and Alfréd Rényi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103–111. MR 272026, DOI 10.1007/BF02795493
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- V. V. Petrov, Generalization of Cramér’s limit theorem, Uspehi Matem. Nauk (N.S.) 9 (1954), no. 4(62), 195–202 (Russian). MR 0065058
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 48 (1975), 438-446
- MSC: Primary 60F15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380950-0
- MathSciNet review: 0380950