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MORSE-SMALE ENDOMORPHISMS OF THE CIRCLE

LOUIS BLOCK1

ABSTRACT.   The orbit structure of a continuously differentiable map /

of the circle is examined, in the case where the nonwandering set of /is

finite and hyperbolic.   It is shown that there is a natural number  n{f)  such

that the period of any periodic point of f is n(f) times a power of 2.

1. Introduction.   It is well known (see [4]) that for a Kupka-Smale diffeo-

morphism / of the circle  S    with 0(/) finite, the following are true:

A. 0(/) consists of periodic points.

B. The expanding and contracting periodic points alternate.

C. If / is orientation preserving, all periodic points have the same

period, and if / is orientation reversing all periodic points have period one

or two.

The purpose of this paper is to determine to what extent A, B, and C

are true for a Kupka-Smale endomorphism / of S    with fi(/) finite.   (To avoid

unnecessary confusion caused by certain pathological cases, we also assume

a generic property about the singularities of /„)   The results are stated in

Theorems A, B, and C, following the necessary definitions.

We let  EndiS   ) denote the space of  C    maps of S    into itself.   Fix

/ £ End(5   ),   A point x £ S     is said to be wandering if there is a neighborhood

N of x in Sl such that f'{N) n N = 0 ,  Vz > 0.   The  set of points which are

not wandering is called the nonwandering set and denoted fl(/).   A point

x £ S     is called a periodic point if fn{x)= x for some natural number 77.   The

minimum of \n\f"(x) = x\   is called the period of x.

A periodic point x of period n is said to be contracting if   \Df"{x)\ < 1,

and expanding if  \Dfn(x)\ > 1.   /is said to be Kupka-Smale if any periodic

point of / is expanding or contracting.
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A point  x £ S     is called a singularity of / if Df{x) =0.   x is said to be

eventually periodic if /   (x) is periodic for some natural number 272, or equiva-

lently if orb(x) is finite, where  orb(x)= \fn{x)\n > OS.

We now define  MS(S  ) to be the set of / e End(S   ) such that fl(/) is

finite, and:

(1) / is Kupka-Smale.

(2) No singularity of / is eventually periodic.

For / £ MS(S  ) we let 0  (/) (respectively fl  (/)) denote the set of contracting

(respectively expanding) periodic points of /.

We will prove the following:

Theorem A.   If f £ MS(S  ) then fl(/) consists of periodic points.

Theorem B.   Let f £ MS(S   ), and card denote cardinality.

cardiH/) < cardiM/) < cardiM/) + 1.

Equality {of card A  (/) and card Q,  (/)) holds if and only if f is onto.   In the

onto case the expanding and contracting periodic points alternate.

Theorem C.   Let f £ MS(S  ).   There is a natural number n(f) such that

the period of any periodic point of f is n(f) times a power of 2.   (Here we in-

clude  1 = 2    as a power of 2.)

We conclude this section with a few remarks.   First, suppose / £ MS(S   )

2
is  C    and satisfies the additional generic properties:

(3) All singularities of /are nondegenerate (i.e. the second derivative

is not zero).

(4) Orbits of distinct turning points are disjoint.

Then / is structually stable (see [l] or [3]).   In fact, the set of maps /

satisfying these properties can be classified up to topological conjugacy, by

associating to each such /a finite diagram consisting of certain eventually

periodic points of /and iterates of the singularities of / (see [l] for details,

or [2] where a special case is studied).

Second, since x £ 0(/) => f(x) £ iî(/), it is obvious that / e MS(S  ) and

x e 0(/) imply orb(x) is finite.   However this does not mean x is periodic for

endomorphisms.   So Theorem A is not immediate as it is in the diffeomorphism

case.

Third, we note that one can construct (by induction) for any natural num-

ber 72, a map /    in MS(S  ) with periodic points of period 1, 2, 4, • • • , 2"  (see

[l] for details).   Thus the statement in Theorem C is essentially the most that

can be said.
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Finally, we remark that Theorems A, B, and C are true without the

assumption that no singularity is eventually periodic.   However, dropping

this assumption makes a few of the proofs somewhat cumbersome, while add-

ing little generality.

2. Proof of Theorem A.   Let / £ End(S   ), and let x be an expanding

periodic point of period n.   We let  W"(x) denote the local unstable manifold

of x, which is simply an open interval about x on which \Df  \ > 1, such that

f"(W^(x))A Wut(x).   We set  Wu(x)= orbOV"(x)), where  otb{A) is defined for

any set A by otb(A) = U„ >0f"(A).

We will use the following remark in the proof of Proposition 1.   If g is a

continuous map of S     into itself, and / is a closed interval in S   with g(I) 3

/ and g(I) 4 S   , then g has a fixed point in /.   This statement follows imme-

diately from continuity (Rolle 's theorem), but is false without the hypothesis

gd)4sl.

Theorem A follows immediately from the following proposition.

Proposition 1.  Suppose f £ End(5   ) is Kupka-Smale and no singularity

of f is eventually periodic.   Suppose y £ fl(F) is eventually periodic but not

periodic.   Then y is a limit of periodic points.

Proof.  By hypothesis there is an expanding periodic point p and an in-

teger  k > 0 with / (y) = p.   Let V be any neighborhhod of y.   By choosing V

smaller if necessary, we may assume that / (V) is a neighborhood of p in

W¡(p). _

Note that y £ W  (p) or else y would be wandering.   But since  W  (p)-

W  (p) is a finite invariant set, we have  y £ W  (p).   Hence  3yt e Wu(p) and

?2 > 0 with /"(y, ) = y-   Eet W be a closed interval about y1  in W"(p) such that

/ (W) is a neighborhood of y in V.   Then /"+   {W) is a neighborhood of p in

W¡(p).

Now, there is a closed interval  K C f"     {W), and an integer / > 0, such

that  fl(K)=W.   So, fn + k+l(K)= fn + k(W), which isa proper closed interval

containing K.   Hence K contains a periodic point, which implies that all

iterates of K contain periodic points.   In particular, since  V D/"(W) =

/       (K), V has a periodic point.   Since V was arbitrary this completes the

proof.    Q.E.D.

3. Proof of Theorem B.

Lemma 2.   Let f £ MS(S   ) and let p be an expanding periodic point of f.
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There does not exist y £ (Wu(p)- orb(p)) with p £ orb(y).

Proof.  Such an element y would be nonwandering, but not periodic, a

contradiction by Theorem A.    Q.E.D.

We now make another definition.   We will use the notation  [a, b] to de-

note the arc from fl to b in which b is in the counterclockwise direction from

fl.   Let / e MS{S   ),.   Let p be an orientation preserving expanding fixed point

of /.   Set  W"(p, cc)= orbtp, b], where b is a point in  W"{p) in the counter-

clockwise direction from p, and set  Wu(p, cl)= orb[a, p], where fl is a point

in W"{p) in the clockwise direction from p.   From the definition of W"(p), it

follows that  W"(p, cc) and W"(p, cl) ate independent of the choices for a

and b.   If p is an orientation reversing expanding fixed point, define

W  (p, cc) and W  (p, cl) by thinking of p as an orientation preserving fixed
2

point of / .   Finally, if p is an expanding periodic point of period n, define

W  (p, cc) and W  (p, cl) by thinking of p as a fixed point of /  .

Proposition 3.   Let p be an expanding periodic point of f £ MS(S   ) and

let  I=W  (p, cc) or I = W   (p, cl).   Then I is a proper subinterval of S    which

contains another periodic point {besides p), and the closest periodic point

to p in I is contracting.

Proof.   By looking at a power of /, we may assume without loss of gen-

erality that p is an orientation preserving fixed point.   We may also assume

that  l=Wu(p,cc).   If  I=S\ 3y 4 p in Wu{p, cc) with /(y)= p.   This contra-

dicts Lemma 2.   Hence / is a proper subinterval of S  .   Let  / = [p, b].

We put an order < on / by identifying / with a subinterval of the real

line.   If fib) = b then b is a fixed point of / in /.   If not f{b) < b.   Since p is

expanding, 3d £ Wf(p) in [p, b] with d < f(d).   By continuity / has a fixed

point in [p, b].

Let c be the closest periodic point to p in /.   We must show that c is

contracting.   Without loss of generality we may assume that c is an orienta-

tion preserving fixed point.   Suppose c is expanding.   3/< c, with /(/) < /.

Hence there is a fixed point in [d, /].   This contradicts the fact that c is the

closest periodic point to p in /.   Hence c is contracting.    Q.E.D.

If c is a contracting periodic point of period 77 of / £ End(S  ), we define

the stable manifold of c by Ws(c) = \x £ S   \c is a limit point of orb(x)|.   The

component of  W  (c) which contains c is called the semilocal stable manifold

of c, and is denoted by slsm(c).

Proposition 4.   Let c be a contracting periodic point of f £ MS(S   ).   //
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slsm(c)/ S  , then one of the endpoints of slsm(c) is an expanding periodic

point.

Proof.   Let E be the set of endpoints of slsm(c).   £ has one or two ele-

ments and fn{E)C E, where c is of period 72.   Hence / has a periodic point in

E.   We show that any periodic point p £ E  is expanding    Suppose p is con-

tracting.   We may assume that c and p are orientation preserving fixed points,

and p is in the counterclockwise direction from c.   Put an order < on [c, p]

as in Proposition 3.   3fl and b in (c, p) with /(fl) < a and b < f{b).   Hence

there is a fixed point in (c, p).   This is a contradiction since c is the only

fixed point in slsm(c).    Q.E.D.

The following proposition follows almost immediately from the Lefschetz

trace formula (see [6]).

Proposition 5.   If f £ MS(S  ) then the degree of f is 0, + I, or - 1.   // the

degree of f is 0, then card fl  (/0 = card 0  (/) + 1.   // the degree of f is ±1

then card i2c(/)= card ilg(f).

Proposition 6.   Let f e MS(Sl) be onto..   Then card fle(/) = card £î_(/)o

Proof.  Without loss of generality we may assume that all the periodic

points of / are orientation preserving fixed points,   Suppose the statement is

false,.   Then there are two contracting fixed points  c, and c2  such that the

interval (c,, c   ) contains no fixed points.   (The only other possibility is

that A(/) consists of a single fixed sink c, but this would imply / is not onto

by Proposition 4.)

Let  /= [c., cA.   Pick points  t. e slsm(c   )and t2 £ slsm(c   ) in /, such

that fit ^eic^t r) and fit 2)£ {t 2,c2).   Let J = [tv t2l   Then /(/) M/(/2),

/(/,)]•   (For, if /(/) did not contain this interval, it would have to contain

[/(/j), fit2)l   Then /(/) 3 / and /(/) is a proper subinterval of S  .   Hence

there is a fixed point in /, a contradiction.)

Let 0  if) = \e,,•••, e   \.   There are points  k,, — , k    in / such that
e   ' 1 '72 * 1 '       72

f{k.) = e . for i = 1, • • •, 72.   Since / is onto for each  z = 1 ,*•*,«, we can find

a sequence   {k.     ) with k. = k . and f{k~m) = k~m      Vttz > 0.   The sequence

{k.     ) must have a limit point, and a limit point of this sequence is clearly

nonwandering.   So to each k. we can assign an expanding fixed point e.

such that  e . is a limit point of the sequence {k~m).   Define a map T:

\k,, &,, • • • , k  ! —► \k,, k., • • '    k  ! by T{k.) = k., where  e .  is the chosen1       ¿ '22 12 ,72/ 2 ; ;

limit point of {k.     ).   Any map from a finite set into itself has a periodic
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point, so there is a subset of U,, i2,*V, kj, say \k    , • • -, k. I, such that

T(/é. ) = ze.       for i = 1, • • •, r - 1 and T(k. ) =* *. •
>i 72+l 'r >i

Let U be any neighborhood of k .  .   T{k. ) = /e.    means that e.    is a
71 7r ;I 71

limit point of (k~m).   Now /((7) is a neighborhood of  e.    so some iterate of
r 1

(7 contains k . .   Then  T(ze ) -  k .   means e .    is a limit point of {k .       ).
>r Jr~l        ■    >r >r >r-l

So some iterate of U contains k.       .It follows after r - 2  more steps that
7r-l

an iterate of U contains k.   and hence intersects 11.   Since U was arbitrary,
>l

k.    is nonwandering.   This is a contradiction and completes the proof.    Q.E.D.
71

Theorem B now follows from Propositions 5 and 6 (and the fact that if

/ is not onto then the degree of / is 0).   In view of Proposition 5, the follow-

ing corollary is essentially a restatement of the content of Theorem B.

Corollary 7.   If f £ MS{S  ) and the degree of f is 0 then f is not onto.

4. Proof of Theorem C.

Proposition 8.   Let e and c be adjacent expanding and contracting

1 2
periodic points of f £ MS'S   ) with c fixed.   Then e is fixed by f „

Proof.  Without loss of generality we may assume that there are no

periodic points in {e, c).   Let e.   be the closest point to e in the counter-

clockwise direction from e, in orb(e).   We have two cases.

Case 1. /(e)/ e..   Then f([e , c]) contains c and the point /(e) which

is not in [e, e. ].   Hence 3x £ (e, c) such that fix) = e or f{x) = e   .   In either

case  e £ orb(x), a contradiction by Lemma 2 and Proposition 3.

Case 2. /(e)= e..   Note   [e, e  ]C W"(e), because  /([e, c]) is an interval

containing c and e., so f{[e, c]) D [c, e A.   If f{e   ) = e we are done, so sup-

pose f{e.) 4 e.   Then /([e, e   ]) contains c, and the point fie   ) is not in

[e, e,].   Hence By £ (e, e   ) such that f(y) = e or f(y) ~ e  .   In either case

e £ orb(y), a contradiction by Lemma 2.

Proposition 9.   Let e and c be adjacent expanding and contracting

periodic points of f £ MS(S  ) with e fixed.   Then c has period a power of 2.

(Here we include  1 = 2     as a power of 2.)

Proof.  Suppose not.   Without loss of generality we may assume that

there are no periodic points in (e, c).   Let p be the closest periodic point to

e, in the counterclockwise direction from e, which has period a power of 2

(there is such a p by the proof of Proposition 3).   Suppose p is of period
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k = 2n.   It we let g = f    , then in the interval   [e, p], g has only two fixed

points, e and p, both of which are orientation preserving.   It follows that p

is contracting.   For if p is expanding, then by the proof of Proposition 3,

p £ Wu{e, cc) and e £ Wu(p, cl).   This implies that there is a nonperiodic

nonwandering point in Wu(e, ce), a contradiction.

Let b be the closest periodic point to p in (e, p).   Then b is expanding

by the proof of Theorem B, since   [b, p] is in Im(g).   Under g, p is a con-

tracting fixed point, and b is an expanding periodic point of period greater

than 2.   This contradicts Proposition 8.     Q.E.D.

Theorem C now follows from Propositions 8 and 9 and Theorem B.
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