ERRATUM TO "TRANSFORMATION GROUPS OF AUTOMORPHISMS OF C(X, G)"

J. S. YANG

The pair (X, G) in Remark 5 and Theorem 6 should be assumed, in addition, to be an S-pair and that G is simple. The proof of Remark 5 now should be replaced by:

Indeed each M_p has the stated property. If M is an F-normal subgroup of C(X, G) with the stated property, then there is $p \in \bigcap_{f \in M} Z(f)$, and Mis a normal subgroup of C(X, G) contained in M_p . Let $\eta: C(X, G) \to C(X, G)/M$ be the natural map, and let $\theta = \phi \cdot \eta: C(X, G) \to G$. Then θ is a homomorphism with ker $\theta = M$, and $\theta(M_p)$ is a normal subgroup of G. Since (X, G) is an S-pair, $\theta(M_p) \neq G$. Hence $\theta(M_p) = e$ since G is simple, and we have $M = M_p$.

REFERENCE

1. J. S. Yang, Transformation groups of automorphisms of C(X, G), Proc. Amer. Math. Soc. 39 (1973), 619-624.

ERRATUM TO ''ON ISOMORPHIC GROUPS AND HOMEOMORPHIC SPACES''

J. S. YANG

The group G in Proposition 4, Theorems 8, 9, and 11 should be assumed, in addition, to be simple. Peter Nickolas has pointed out to the author that Theorems 8 and 11 were incorrectly stated.

REFERENCE

1. J. S. Yang, On isomorphic groups and homeomorphic spaces, Proc. Amer. Math. Soc. 43 (1974), 431-438.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA 29208

Copyright © 1975, American Mathematical Society