## The dimension of the ring of coefficients in a polynomial ring

HTML articles powered by AMS MathViewer

- by Jimmy T. Arnold
- Proc. Amer. Math. Soc.
**49**(1975), 32-34 - DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
- PDF | Request permission

## Abstract:

$A$ and $B$ are commutative rings with identity. We say that $A$ and $B$ are stably equivalent provided there exists a positive integer $n$ such that the polynomial rings $A[{X_1}, \cdots ,{X_n}]$ and $B[{Y_1}, \cdots ,{Y_n}]$ are isomorphic. If $A$ and $B$ are stably equivalent, then they have equal Krull dimension.## References

- Shreeram S. Abhyankar, William Heinzer, and Paul Eakin,
*On the uniqueness of the coefficient ring in a polynomial ring*, J. Algebra**23**(1972), 310–342. MR**306173**, DOI 10.1016/0021-8693(72)90134-2 - J. W. Brewer and E. A. Rutter,
*Isomorphic polynomial rings*, Arch. Math. (Basel)**23**(1972), 484–488. MR**320068**, DOI 10.1007/BF01304919 - D. B. Coleman and E. E. Enochs,
*Isomorphic polynomial rings*, Proc. Amer. Math. Soc.**27**(1971), 247–252. MR**272805**, DOI 10.1090/S0002-9939-1971-0272805-3 - Paul Eakin and K. K. Kubota,
*A note on the uniqueness of rings of coefficients in polynomial rings*, Proc. Amer. Math. Soc.**32**(1972), 333–341. MR**297763**, DOI 10.1090/S0002-9939-1972-0297763-8 - Paul Eakin and William Heinzer,
*A cancellation problem for rings*, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973, pp. 61–77. MR**0349664** - M. Hochster,
*Nonuniqueness of coefficient rings in a polynomial ring*, Proc. Amer. Math. Soc.**34**(1972), 81–82. MR**294325**, DOI 10.1090/S0002-9939-1972-0294325-3 - Irving Kaplansky,
*Commutative rings*, Allyn and Bacon, Inc., Boston, Mass., 1970. MR**0254021**

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**49**(1975), 32-34 - DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
- MathSciNet review: 0360553