The dimension of the ring of coefficients in a polynomial ring
HTML articles powered by AMS MathViewer
- by Jimmy T. Arnold
- Proc. Amer. Math. Soc. 49 (1975), 32-34
- DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
- PDF | Request permission
Abstract:
$A$ and $B$ are commutative rings with identity. We say that $A$ and $B$ are stably equivalent provided there exists a positive integer $n$ such that the polynomial rings $A[{X_1}, \cdots ,{X_n}]$ and $B[{Y_1}, \cdots ,{Y_n}]$ are isomorphic. If $A$ and $B$ are stably equivalent, then they have equal Krull dimension.References
- Shreeram S. Abhyankar, William Heinzer, and Paul Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342. MR 306173, DOI 10.1016/0021-8693(72)90134-2
- J. W. Brewer and E. A. Rutter, Isomorphic polynomial rings, Arch. Math. (Basel) 23 (1972), 484–488. MR 320068, DOI 10.1007/BF01304919
- D. B. Coleman and E. E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247–252. MR 272805, DOI 10.1090/S0002-9939-1971-0272805-3
- Paul Eakin and K. K. Kubota, A note on the uniqueness of rings of coefficients in polynomial rings, Proc. Amer. Math. Soc. 32 (1972), 333–341. MR 297763, DOI 10.1090/S0002-9939-1972-0297763-8
- Paul Eakin and William Heinzer, A cancellation problem for rings, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973, pp. 61–77. MR 0349664
- M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81–82. MR 294325, DOI 10.1090/S0002-9939-1972-0294325-3
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 32-34
- DOI: https://doi.org/10.1090/S0002-9939-1975-0360553-4
- MathSciNet review: 0360553