The Zariski-Lipman conjecture for homogeneous complete intersections
HTML articles powered by AMS MathViewer
- by Melvin Hochster
- Proc. Amer. Math. Soc. 49 (1975), 261-262
- DOI: https://doi.org/10.1090/S0002-9939-1975-0360585-6
- PDF | Request permission
Abstract:
A new short proof is given that if $R$ is a homogeneous complete intersection over a field $K$ of char 0 and ${\operatorname {Der} _K}(R,R)$ is $R$-free, then $R$ is a polynomial ring.References
- David A. Buchsbaum and David Eisenbud, Some structure theorems for finite free resolutions, Advances in Math. 12 (1974), 84–139. MR 340240, DOI 10.1016/S0001-8708(74)80019-8
- Tor H. Gulliksen, Massey operations and the Poincaré series of certain local rings, J. Algebra 22 (1972), 223–232. MR 306190, DOI 10.1016/0021-8693(72)90143-3
- Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898. MR 186672, DOI 10.2307/2373252
- Selmer Moen, Free derivation modules and a criterion for regularity, Proc. Amer. Math. Soc. 39 (1973), 221–227. MR 313239, DOI 10.1090/S0002-9939-1973-0313239-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 261-262
- DOI: https://doi.org/10.1090/S0002-9939-1975-0360585-6
- MathSciNet review: 0360585