Regular functions $f(z)$ for which $zf^{โ} (z)$ is $\alpha$-spiral-like
HTML articles powered by AMS MathViewer
- by Pran Nath Chichra
- Proc. Amer. Math. Soc. 49 (1975), 151-160
- DOI: https://doi.org/10.1090/S0002-9939-1975-0361033-2
- PDF | Request permission
Abstract:
Let $\mathfrak {F}_\alpha ^\lambda$ be the class of functions $f(z) = z + {a_2}{z^2} + \cdots$ which are regular in $E = \{ z/|z| < 1\}$ and satisfy \[ \operatorname {Re} \{ {e^{i\alpha }}(1 + zf''(z)/fโ(z))\} > \lambda \cos \alpha \] for some $\alpha ,|\alpha | < \pi /2$, and for some $\lambda ,0 \leq \lambda < 1$. The author finds a range on $\alpha$ for which $f(z)$ in $\mathfrak {F}_\alpha ^\lambda$ is univalent in $E$. In particular, the author improves upon the range on a for which $f(z) \in \mathfrak {F}_\alpha ^0$ is known to be univalent in $E$. Also a corresponding result is obtained for those functions $f(z)$ in $\mathfrak {F}_\alpha ^\lambda$ for which $f''(0) = 0$.References
- R. S. Gupta, Radius of univalence and starlikeness of a class of analytic functions, J. Austral. Math. Soc. 14 (1972), 1โ8. MR 0316692, DOI 10.1017/S1446788700009551
- Richard J. Libera and Michael R. Ziegler, Regular functions $f(z)$ for which $zf^{\prime } (z)$ is $\alpha$-spiral, Trans. Amer. Math. Soc. 166 (1972), 361โ370. MR 291433, DOI 10.1090/S0002-9947-1972-0291433-2
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545โ551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- M. S. Robertson, Univalent functions $f(z)$ for which $zf^{\prime } (z)$ is spirallike, Michigan Math. J. 16 (1969), 97โ101. MR 244471, DOI 10.1307/mmj/1029000208
- W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385โ387. MR 183866, DOI 10.1307/mmj/1028999421 L. ล paฤek, Pลispฤvek k teorii funkci prostyฤh, ฤasopis Pฤst. Mat. Fys. 62 (1933), 12-19.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 151-160
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1975-0361033-2
- MathSciNet review: 0361033