Weakly compact groups of operators
HTML articles powered by AMS MathViewer
- by T. A. Gillespie and T. T. West
- Proc. Amer. Math. Soc. 49 (1975), 78-82
- DOI: https://doi.org/10.1090/S0002-9939-1975-0361924-2
- PDF | Request permission
Abstract:
It is shown that the weakly closed algebra generated by a weakly compact group of operators on a Banach space is reflexive and equals its second commutant. Also, an example is given to show that the generator of a monothetic weakly compact group of operators need not have a logarithm in the algebra of all bounded linear operators on the underlying space.References
- K. de Leeuw, Linear spaces with a compact group of operators, Illinois J. Math. 2 (1958), 367–377. MR 102023
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- T. A. Gillespie and T. T. West, Operators generating weakly compact groups, Indiana Univ. Math. J. 21 (1971/72), 671–688. MR 315491, DOI 10.1512/iumj.1972.21.21052
- T. A. Gillespie and T. T. West, Operators generating weakly compact groups. II, Proc. Roy. Irish Acad. Sect. A 73 (1973), 309–326. MR 328662
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738
- Yu. I. Lyubič, Almost periodic functions in the spectral analysis of operators, Soviet Math. Dokl. 1 (1960), 593–595. MR 0119097
- Heydar Radjavi and Peter Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683–692. MR 251569, DOI 10.2307/2373347
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 78-82
- MSC: Primary 47D10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0361924-2
- MathSciNet review: 0361924