WEAKLY COMPACT GROUPS OF OPERATORS

T. A. GILLESPIE AND T. T. WEST

ABSTRACT. It is shown that the weakly closed algebra generated by a weakly compact group of operators on a Banach space is reflexive and equals its second commutant. Also, an example is given to show that the generator of a monothetic weakly compact group of operators need not have a logarithm in the algebra of all bounded linear operators on the underlying space.

Let X be a complex Banach space, $B(X)$ the algebra of all bounded linear operators on X, and I the identity operator on X. By a group in $B(X)$ we shall mean a multiplicative group with unit I. The weak operator topology on $B(X)$ is denoted by the letter w. Given a nonempty subset \mathcal{E} of $B(X)$, \mathcal{E}' and \mathcal{E}'' denote the first and second commutants of \mathcal{E}, and $A(\mathcal{E})$ is the w-closed subalgebra of $B(X)$ generated by \mathcal{E} and I. The lattice of all \mathcal{E}-invariant closed subspaces of X is denoted by $\text{Lat} \mathcal{E}$, and

$$\text{Alg Lat} \mathcal{E} = \{ T \in B(X): T(L) \subseteq L \ (L \in \text{Lat} \mathcal{E}) \}.$$

A subalgebra A of $B(X)$ is reflexive if $\text{Alg Lat} A = A$. It is clear that reflexive algebras are w-closed and contain I. Finally, C, R, Z and T are the complex numbers, the reals, the integers and the unit circle.

We present several results concerning w-compact groups in $B(X)$. Such groups come within the general framework discussed by de Leeuw in [1], where the underlying space is called a G-space. The monothetic (singly generated) case has been considered in [4], [5], where an operator in $B(X)$ generating a w-compact group (with unit I) is called a G-operator. It was shown in [4] that, if \mathcal{G} is a monothetic w-compact group, then $A(\mathcal{G})$ is reflexive and $\mathcal{G}'' = A(\mathcal{G})$. In fact the methods developed there and in [5] can be extended to prove

Theorem 1. Let \mathcal{G} be an abelian w-compact group in $B(X)$ (with unit I). Then $A(\mathcal{G})$ is reflexive and $\mathcal{G}'' = A(\mathcal{G})$.

Received by the editors February 4, 1974.

AMS (MOS) subject classifications (1970). Primary 47D10, 47A15, 46L20; Secondary 43A22, 43A05.
Problem A. Does Theorem 1 remain valid if the hypothesis that \mathcal{G} be abelian is omitted?

G-operators have occurred in the work of Ljubič [8], where a study is made of the spectral properties of an operator $S \in B(X)$ satisfying $\|\exp (i r S)\| \leq M$ ($r \in \mathbb{R}$) and a certain almost-periodic condition. (The space X is taken to be weakly sequentially complete.) It is shown that each such S has a total set of eigenvectors corresponding to real eigenvalues, from which it is easily seen (via [4, Theorem 1.2]) that $\exp (iS)$ is a G-operator.

Problem B. Can every G-operator be written as $\exp (iS)$ for some bounded S?

Solution A. Theorem 1 does indeed extend to the nonabelian case and we sketch the main ideas of the proof.

Let \mathcal{G} be a ω-compact group in $B(X)$.

Lemma 2 [2, Theorem 8.1]. X is the closed linear span of finite dimensional \mathcal{G}-invariant subspaces.

An easy consequence of this is the following description of $\text{Lat } \mathcal{G}$ (cf. Corollary 1.4 of [4]).

Lemma 3. Each subspace in $\text{Lat } \mathcal{G}$ is spanned by finite dimensional \mathcal{G}-irreducible subspaces.

Write $X^{(n)}$ for the direct sum of n copies of X and $T^{(n)} \in B(X^{(n)})$ for the nth direct sum of T. Putting $\mathcal{G}^{(n)} = \{T^{(n)}: T \in \mathcal{G}\}$, it is easy to see that $\mathcal{G}^{(n)}$ is a ω-compact group in $B(X^{(n)})$ with unit $I^{(n)}$.

Lemma 4. Let $S \in \text{Alg Lat } \mathcal{G}$. Then $S^{(n)} \in \text{Alg Lat } \mathcal{G}^{(n)}$ for $n = 1, 2, \ldots$.

This is the key result and we sketch its proof. A straightforward argument reduces the proof to the case $n = 2$. It is then sufficient, by Lemma 3, to show that each finite dimensional $\mathcal{G}^{(2)}$-irreducible subspace M of $X^{(2)}$ is $S^{(2)}$-invariant. Using irreducibility, this is easily done in the case when M contains $(0, x)$ for some $x \neq 0$. Suppose therefore that M contains no elements of this form. Then there is a finite dimensional subspace N of X and a linear operator $U: N \rightarrow X$ such that $M = \{(x, Ux): x \in N\}$. The hypotheses on M imply that N and UN belong to $\text{Lat } \mathcal{G}$ and that $(UT - TU)(N) = \{0\}$ ($T \in \mathcal{G}$). Also, N is \mathcal{G}-irreducible and thus either

(i) $U(N) = N$, or

(ii) $U(N) \cap N = \{0\}$.

Problem A. Does Theorem 1 remain valid if the hypothesis that \mathcal{G} be abelian is omitted?

G-operators have occurred in the work of Ljubič [8], where a study is made of the spectral properties of an operator $S \in B(X)$ satisfying $\|\exp (i r S)\| \leq M$ ($r \in \mathbb{R}$) and a certain almost-periodic condition. (The space X is taken to be weakly sequentially complete.) It is shown that each such S has a total set of eigenvectors corresponding to real eigenvalues, from which it is easily seen (via [4, Theorem 1.2]) that $\exp (iS)$ is a G-operator.

Problem B. Can every G-operator be written as $\exp (iS)$ for some bounded S?

Solution A. Theorem 1 does indeed extend to the nonabelian case and we sketch the main ideas of the proof.

Let \mathcal{G} be a ω-compact group in $B(X)$.

Lemma 2 [2, Theorem 8.1]. X is the closed linear span of finite dimensional \mathcal{G}-invariant subspaces.

An easy consequence of this is the following description of $\text{Lat } \mathcal{G}$ (cf. Corollary 1.4 of [4]).

Lemma 3. Each subspace in $\text{Lat } \mathcal{G}$ is spanned by finite dimensional \mathcal{G}-irreducible subspaces.

Write $X^{(n)}$ for the direct sum of n copies of X and $T^{(n)} \in B(X^{(n)})$ for the nth direct sum of T. Putting $\mathcal{G}^{(n)} = \{T^{(n)}: T \in \mathcal{G}\}$, it is easy to see that $\mathcal{G}^{(n)}$ is a ω-compact group in $B(X^{(n)})$ with unit $I^{(n)}$.

Lemma 4. Let $S \in \text{Alg Lat } \mathcal{G}$. Then $S^{(n)} \in \text{Alg Lat } \mathcal{G}^{(n)}$ for $n = 1, 2, \ldots$.

This is the key result and we sketch its proof. A straightforward argument reduces the proof to the case $n = 2$. It is then sufficient, by Lemma 3, to show that each finite dimensional $\mathcal{G}^{(2)}$-irreducible subspace M of $X^{(2)}$ is $S^{(2)}$-invariant. Using irreducibility, this is easily done in the case when M contains $(0, x)$ for some $x \neq 0$. Suppose therefore that M contains no elements of this form. Then there is a finite dimensional subspace N of X and a linear operator $U: N \rightarrow X$ such that $M = \{(x, Ux): x \in N\}$. The hypotheses on M imply that N and UN belong to $\text{Lat } \mathcal{G}$ and that $(UT - TU)(N) = \{0\}$ ($T \in \mathcal{G}$). Also, N is \mathcal{G}-irreducible and thus either

(i) $U(N) = N$, or

(ii) $U(N) \cap N = \{0\}$.

In case (i), U commutes with the irreducible set of operators $\mathcal{G}|N$ on N. Hence U is a scalar, from which it follows that $M \in \text{Lat } S^{(2)}$. In case (ii), the subspace $L = (I + U)N$ is \mathcal{G}- and hence S-invariant. Therefore, given $x \in N$, there exists $y \in N$ such that $Sx - y = -SUx + Uy$. The left-hand side of this equation is in N and the right in $U(N)$, since N and $U(N)$ are S-invariant. Therefore both sides are zero, giving $SUx = USx \ (x \in N)$, and hence $M \in \text{Lat } S^{(2)}$.

A standard argument (cf. [9, Lemma 1]) now gives

Theorem 5. $A(\mathcal{G})$ is reflexive.

Given $A = [a_{ij}] \in \mathbb{M}_n(\mathbb{C})$, the $n \times n$ complex matrices, and $x = (x_1, \ldots, x_n) \in X^{(n)}$, let Ax denote the element $y = (y_1, \ldots, y_n)$ in $X^{(n)}$ defined by $y_i = \sum_{j=1}^{n} a_{ij} x_j$. Let M be a finite dimensional \mathcal{G}-invariant subspace of X with basis $\{u_1, \ldots, u_n\}$. Given $T \in \mathcal{G}$, let $Tu_i = \sum_{j=1}^{n} a_{ij}(T)u_j$.

Lemma 6. The map $\alpha: T \to \alpha(T) = [\alpha_{ij}(T)]$ is an anti-representation of $\mathcal{G} \to \mathbb{M}_n(\mathbb{C})$.

Define the operator P in $B(X^{(n)})$ by

$$P_x = \int_{\mathcal{G}} \alpha(T^{-1})T^{(n)}x \ dT,$$

where dT denotes Haar measure on \mathcal{G}. P is a projection, but this fact is not needed here. What is needed is the following result, which is easily verified using Lemma 6.

Lemma 7. $PT^{(n)}x = P\alpha(T)x$ for $T \in \mathcal{G}$ and $x \in X^{(n)}$.

Defining u in $X^{(n)}$ by $u = (u_1, \ldots, u_n)$, we have $T^{(n)}u = \alpha(T)u$ for each $T \in \mathcal{G}$. Therefore, from the definition of P, $Pu = u$. Since $u \neq 0$, it follows that $\ker P$ is strictly smaller than $X^{(n)}$. Thus, if X^* is the dual space of X, there exists $f = (f_1, \ldots, f_n) \in X^*^{(n)}$ with $f \neq 0$ such that f annihilates $\ker P$ (making the obvious identification of the dual space of $X^{(n)}$ with $X^*^{(n)}$). Put

$$F = \sum_{i=1}^{n} f_i \otimes u_i.$$

Then $F \neq 0$. Using the fact that $T^{(n)}x - \alpha(T)x$ belongs to $\ker P$ for every $T \in \mathcal{G}$ and $x \in X^{(n)}$, a routine calculation gives

Lemma 8. $F \in \mathcal{G}'$.

Lemma 9. Let M be \mathcal{G}-irreducible and let $S \in \mathcal{G}$. Then $M \in \text{Lat } S$.

80

T. A. GILLESPIE AND T. T. WEST
To see this observe that F and S commute. Further $\{0\} \neq F(X) \subset M$, and since $F \in \mathcal{O}_1, F(X)$ is \mathcal{O}-invariant. By irreducibility $F(X) = M$; but then $S(M) = SF(X) = FS(X) \subset M$.

Using reflexivity, Lemmas 9 and 3 give $\mathcal{O}'' \subset A(\mathcal{O})$. Since the reverse inclusion always holds, we have thus proved

Theorem 10. $\mathcal{O}'' = A(\mathcal{O})$.

Solution B. We give an example of a G-operator on a weakly sequentially complete space which is not of the form $\exp(iS)$ with S bounded. This example depends on some general facts about logarithms of point measures.

Let G be a LCAG and let $M(G)$ be the commutative Banach algebra of bounded regular complex measures on G under convolution. Given $x \in G$, we show that the point mass δ_x has a logarithm in $M(G)$ if, and only if, x is of finite order in G. The "if" proof follows from elementary spectral theory. For the converse, let $M_d(G)$ be the Banach algebra of discrete measures on G.

Lemma 11. If a discrete measure μ on G has a logarithm in $M(G)$, then μ has a logarithm in $M_d(G)$.

This follows from the fact that if $\mu = \exp \nu$ for some $\nu \in M(G)$, then $\mu = \exp \nu_d$ where ν_d is the discrete part of ν.

Lemma 12. Let $\delta_x = \exp \nu$ in $M(G)$. Then x is of finite order in G.

By Lemma 11 we may (and do) assume that G is discrete. Then the maximal ideal space of $M(G)$ is the compact group \hat{G} dual to G. The proof can be completed by the following simple argument due to Gavin Brown.

Taking Gelfand transforms in the equation $\delta_x = \exp \nu$, we obtain

$$x(\chi) = \delta_x(\chi) = \exp \hat{\nu}(\chi) \quad (\chi \in \hat{G}),$$

where, without loss of generality, $\hat{\nu}(\chi_1) = 0$ for χ_1 the unit of \hat{G}. Since x is a character on \hat{G}, it follows that

$$\hat{\nu}(\chi \psi) = \hat{\nu}(\chi) + \hat{\nu}(\psi) + 2\pi i N(\chi, \psi) \quad (\chi, \psi \in \hat{G})$$

where $N: \hat{G} \times \hat{G} \rightarrow \mathbb{Z}$ is continuous. Let H be the connected component containing χ_1 in \hat{G}. Then $2\pi i N(\chi, \psi) = -\hat{\nu}(\chi_1) = 0$ on H. Hence

$$\hat{\nu}(\chi^n) = n\hat{\nu}(\chi) \quad (\chi \in H, n \in \mathbb{Z}).$$

The boundedness of the continuous function $\hat{\nu}$ on the compact group H
gives $\hat{\nu}(\chi) = 0 \ (\chi \in H)$. Hence $x(\chi) = 1 \ (\chi \in H)$ and so x is of finite order in G [6, 24.20].

We can now give the counterexample for Problem B. Let R_ω be the translation operator on $L^1(T)$ defined by

$$(R_\omega f)(t) = f(t\omega^{-1}) \quad (f \in L^1(T), \ t \text{ a.e.}),$$

where $\omega \in T$ and $\arg \omega$ is an irrational multiple of 2π. R_ω is a G-operator on $L^1(T)$ [4, Example 5.4] and $L^1(T)$ is weakly sequentially complete [3, IV. 8.6].

Theorem 13. R_ω does not have a logarithm in $B(L^1(T))$.

For suppose $R_\omega = \exp S$ in $B(L^1(T))$. Since the powers of ω are dense in T, it follows that S commutes with every translation $R_t \ (t \in T)$. Hence S is a multiplier on $L^1(T)$ and there exists $\mu \in M(T)$ such that $Sf = \mu * f \ (f \in L^1(T))$ [7, Theorem 0.1.1]. Therefore

$$\delta_\omega * f = R_\omega f = (\exp \mu) * f \quad (f \in L^1(T))$$

and so $\delta_\omega = \exp \mu$. Lemma 12 gives the required contradiction.

REFERENCES