## A biorthogonal expansion related to the zeros of an entire function

HTML articles powered by AMS MathViewer

- by Harold E. Benzinger
- Proc. Amer. Math. Soc.
**49**(1975), 135-142 - DOI: https://doi.org/10.1090/S0002-9939-1975-0365231-3
- PDF | Request permission

## Abstract:

Let $D(\lambda ) = {a_0} + \Sigma _{k = 1}^\infty {a_k}{e^{\lambda /k}}$, where the ${a_k}$’s are given complex constants, with ${a_0}{a_1} \ne 0,\Sigma _{k = 1}^\infty |{a_k}| < \infty$. Let $\{ {\lambda _k}\} ,k = 1,2, \cdots$, denote the sequence of distinct zeros of $D(\lambda )$, labeled in order of increasing modulus, and with multiplicities ${m_k} \geq 1$. Let $\{ {\phi _l}(x)\}$ denote the sequence of functions $\{ {x^j}\exp ({\lambda _k}x):j = 0, \cdots ,{m_k} - 1;k = 1,2, \cdots ;0 < x \leq 1\}$. We show that for each $p.1 \leq p < \infty$, there is a sequence $\{ {\psi _l}(x)\}$ in ${L^q}(0,1)\;(pq = p + q)$ such that $({\phi _l},{\psi _m}) = {\delta _{lm}}$. Then we show that $\{ {\phi _l}\}$ is complete in ${L^p}(0,1),1 \leq p < \infty$, and for $1 < p < \infty$, we find a subspace of ${L^p}(0,1)$ such that the biorthogonal expansion $f = \Sigma _{k = 1}^\infty (f,{\psi _k}){\phi _k}$ is valid in the norm of ${L^p}(0,1)$.## References

- Harold E. Benzinger,
*The $L^{p}$ behavior of eigenfunction expansions*, Trans. Amer. Math. Soc.**174**(1972), 333–344 (1973). MR**328189**, DOI 10.1090/S0002-9947-1972-0328189-0 - Harold E. Benzinger,
*Completeness of eigenvectors in Banach spaces*, Proc. Amer. Math. Soc.**38**(1973), 319–324. MR**318941**, DOI 10.1090/S0002-9939-1973-0318941-6 - B. Ja. Levin,
*Distribution of zeros of entire functions*, American Mathematical Society, Providence, R.I., 1964. MR**0156975** - Allan M. Krall,
*An eigenfunction expansion for a nonselfadjoint, interior point boundary value problem*, Trans. Amer. Math. Soc.**170**(1972), 137–147. MR**311985**, DOI 10.1090/S0002-9947-1972-0311985-3 - R. C. Brown, G. B. Green, and A. M. Krall,
*Eigenfunction expansions under multipoint-integral boundary conditions*, Ann. Mat. Pura Appl. (4)**95**(1973), 231–243. MR**324128**, DOI 10.1007/BF02410717

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**49**(1975), 135-142 - MSC: Primary 47E05; Secondary 30A66, 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365231-3
- MathSciNet review: 0365231