COMPLETE DOMAINS WITH RESPECT TO THE CARATHÉODORY DISTANCE

DONG S. KIM

ABSTRACT. Concerning completeness with respect to the Carathéodory distance (c-completeness), the following theorems are shown. A bounded convex (in geometric sense) domain D in \mathbb{C}^n (\mathbb{R}^{2n}) is c-complete, so that it is boundedly holomorphic convex. To preserve c-completeness in complex spaces, it is sufficient to have a proper local biholomorphic mapping as follows: Let α be a proper spread map of a c-hyperbolic complex space (\tilde{X}, \tilde{A}) onto a c-hyperbolic complex space (\tilde{X}, \tilde{A}); then X is c-complete if and only if \tilde{X} is c-complete. We also show the following D to be domains of bounded holomorphy: let (X, A) be a Riemann domain and D a domain in X with $\alpha(D)$ bounded in \mathbb{C}^n. Let $B(D)$ separate the points of D. Suppose there is a compact set K such that for any $x \in D$ there is an analytic automorphism $\sigma \in \text{Aut}(D)$ and a point $a \in K$ such that $\sigma(x) = a$. Then D is a domain of bounded holomorphy.

Let (X, A) be a complex space and D a domain (open and connected) in X. Let $B = B(D)$ be the algebra of bounded holomorphic functions on D and

$$B_1 = \{ f \in B; \sup_{x \in D} |f(x)| = \|f\|_D = 1 \}.$$

We define the Carathéodory distance $c = c_D$ as follows: For $x, y \in D$,

$$c(x, y) = \sup_{g \in B_1} \rho(g(x), g(y)),$$

where

$$\rho(z_1, z_2) = \log \frac{|z_2 - z_1| + |1 - z_1 \overline{z_2}|}{\sqrt{(1 - z_1 \overline{z_1})(1 - z_2 \overline{z_2})}},$$

where z_1, z_2 are in the open unit disc in \mathbb{C}.

Presented to the Society, December 7, 1973; received by the editors October 11, 1973 and, in revised form, April 4, 1974.

AMS (MOS) subject classifications (1970). Primary 32H15, 32D05; Secondary 32E05.

Key words and phrases. c-complete, c-hyperbolic, domain of bounded holomorphy, boundedly holomorphic convex, envelope of bounded holomorphy, Stein manifold of bounded type, analytic automorphism, bounded homogeneous domain.
For \(g \in B_1 \) and \(x' \in D \), set
\[
f(x') = \frac{g(x') - g(x)}{g(x')g(x) - 1};
\]
then
\[
c(x, y) = \sup_{f \in B_X} \left\{ \frac{1}{2} \log \frac{1 + |f(y)|}{1 - |f(y)|} \right\},
\]
where \(B_X = \{ f \in B_1; f(x) = 0 \} \).

This \(c \) is a pseudo-distance on \(D \); \(c \) is a distance if and only if \(B(D) \) separates the points of \(D \), in which case we say that \(D \) is \(c \)-hyperbolic. If every closed ball \(\Delta(p, r) = \{ x \in D; c(p, x) \leq r \}, p \in D \) and \(r > 0 \), is compact, we call \(D \) a \(c \)-complete domain. Horstmann [3] has shown that a \(c \)-complete domain in \(C^n \) is holomorphically convex. Kobayashi [6], [7] has generalized this as follows: a \(c \)-complete domain in a complex space is \(B \)-holomorphically convex. (See [7, Theorem 3.6, Chapter 4].)

We note the following facts about the Carathéodory distance \(c \). \(c \) is trivial on \(C^n \) or on a compact complex space. Every holomorphic map of a complex space to another is distance decreasing. A finite Cartesian product of \(c \)-complete hyperbolic complex spaces is \(c \)-complete hyperbolic. An intersection of \(c \)-complete hyperbolic complex subspaces of a complex space is \(c \)-complete hyperbolic. (See Kobayashi [6], [7].)

We will use the following relatively unknown terminology throughout this note. A domain \(D \) in a complex space \((X, A) \) is said to be a domain of bounded holomorphy if there is a function \(f \in B(D) \) which does not have bounded analytic continuation beyond the domain \(D \). \(D \) is said to be boundedly holomorphic convex if the holomorphically convex hull \(\tilde{K}_B \) relative to \(B(D) \) \((\tilde{K}_B = \{ x \in D; |f(x)| \leq \|f\|_K \text{ for all } f \in B(D) \}) \) is compact for every compact subset \(K \) of \(D \). An envelope of bounded holomorphy is the largest domain into which all bounded holomorphic functions may be continued boundedly (see Kim [4, Definition 2 and Theorem 2]). Finally, a Stein manifold of bounded type is a complex manifold \((X, A) \) such that (i) \(B(X) \) separates the points of \(X \), (ii) \(X \) is boundedly holomorphic convex, and (iii) \(B(X) \) provides a globally defined local coordinate system to each point of \(X \).

Proposition 1. Let \((X_1, A_1) \) and \((X_2, A_2) \) be \(c \)-hyperbolic complex spaces and \(\phi \) a proper holomorphic map of \(X_1 \) onto \(X_2 \). If \(X_2 \) is \(c \)-complete then so is \(X_1 \).
Proof. Let c_{X_1} and c_{X_2} be the distances on X_1 and X_2, respectively. Since $c_{X_2}(\phi(p), \phi(x)) \leq c_{X_1}(p, x)$ for $p, x \in X_1$,
$$\{x \in X_1; c_{X_1}(p, x) \leq r\} \subseteq \phi^{-1}(\{y \in X_2; c_{X_2}(\phi(p), y) \leq r\}).$$
Since the latter set is compact, so is the former.

Theorem 2. Every bounded convex (in the geometric sense) domain in \mathbb{C}^n (\mathbb{R}^{2n}) is c-complete.

Proof. Such a domain D is the intersection of open sets biholomorphic to $S = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; \text{Re } z_i > 0, i = 1, 2, \ldots, n\}$. Since such S's are c-complete, so is D.

Remark. We have a large class of domains D on which $B(D)$ is dense in $\widehat{O}(D)$. By the above theorem, every bounded convex domain D in \mathbb{C}^n is boundedly holomorphic convex so that it is a Stein manifold of bounded type, hence $B(D)$ is dense in $\widehat{O}(D)$.

Proposition 3. A Siegel domain of the second kind is c-complete hyperbolic.

Proof. A Siegel domain of the second kind can be written as the intersection of domains, each of which is biholomorphic to a product of balls. Since a product of balls is c-complete hyperbolic, so is the domain.

We note that, in a Riemann domain $(X, A; \alpha)$ with a bounded spread map α, if a domain D in X is boundedly holomorphic convex, then $B(D)$ separates the points of D (see Kim [5]), so that such a domain is always c-hyperbolic.

To preserve c-completeness from one complex space to another, it suffices to have a local biholomorphic proper map.

Theorem 4. Let (X, A) and (\tilde{X}, \tilde{A}) be c-hyperbolic complex spaces. Let α be a proper spread map of X onto \tilde{X}. Then X is c-complete if and only if \tilde{X} is c-complete.

Proof. If \tilde{X} is c-complete so is X by Proposition 1. Assume that X is c-complete. Let $\Delta(\tilde{p}, r) = \{\tilde{x} \in \tilde{X}; c_{\tilde{X}}(\tilde{p}, \tilde{x}) \leq r\}, \tilde{p} \in \tilde{X}$. We show that $\Delta(\tilde{p}, r)$ is compact. Note that since α is a proper spread map, $\alpha^{-1}(\tilde{x})$ is, for any $\tilde{x} \in \tilde{X}$, a finite point set. For $x \in X$, there is a neighborhood U_x such that $\alpha: U_x \rightarrow \alpha(U_x)$ is biholomorphic. Set $\alpha(U_x) = U_x$. Then there exists $\varepsilon_x > 0$ such that $\Delta(x, \varepsilon_x) = \{y \in \tilde{X}; c_X(x, y) < \varepsilon_x\} \subseteq U_x$. Consider the family $\{\Delta(\tilde{p}, r) \subseteq \tilde{X} \mid x \rightarrow (\tilde{x}, \tilde{y})\}$. This family is an open covering of $\Delta(\tilde{p}, r)$.
Now consider \(\{ \alpha^{-1}(\Delta(\mathcal{X}, e_{\mathcal{X}})) \}; \mathcal{X} \in \Delta(\mathcal{P}, r) \}. \) Recalling that \(\alpha \) is an isometry of each \(\alpha^{-1}(\Delta(\mathcal{X}, e_{\mathcal{X}})) \) to \(\Delta(\mathcal{X}, e_{\mathcal{X}}) \), and that the preimage of \(\mathcal{X} \) is a finite set, we have that \(\bigcup \alpha^{-1}(\Delta(\mathcal{X}, e_{\mathcal{X}})) \) is contained in \(\Delta(p, a) \), for \(\alpha(p) = \mathcal{P} \) and some \(a < \infty \). Since \(\Delta(p, a) \) is compact, choosing a finite covering \(\{ \alpha^{-1}(\Delta(\mathcal{X}, e_{\mathcal{X}})) \}; i = 1, 2, \ldots, n \}, \Delta(\mathcal{P}, r) \) has a finite covering. Hence \(\Delta(\mathcal{P}, r) \) is compact.

The following discussion is limited to Riemann domains.

Proposition 5. Let \((X_1, A_1; a_1)\) and \((X_2, A_2; a_2)\) be Riemann domains, and \((\beta_1; \mathcal{X}_1; \mathcal{X}_1, \mathcal{B}_1), (\beta_2; \mathcal{X}_2; \mathcal{X}_2, \mathcal{B}_2)\) the envelopes of bounded holomorphy of \(X_1\) and \(X_2\), respectively. Let \(\phi: X_1 \rightarrow X_2\) be a spread map of \(X_1\) onto \(X_2\). Then there exists a holomorphic map \(\phi: \mathcal{X}_1 \rightarrow \mathcal{X}_2\) such that \(\phi \circ \beta_1 = \beta_2 \circ \phi\).

Proof.

Let \(\psi = \beta_2 \circ \phi: X_1 \rightarrow \mathcal{X}_2\). Then \(\psi\) is holomorphic and a local biholomorphism. We will show that there is \(\tilde{\phi}: \mathcal{X}_1 \rightarrow \mathcal{X}_2\) such that \(\tilde{\phi} \circ \beta_1 = \psi\).

Let \(\rho = \tilde{\phi} \circ \psi\); then \(\rho\) is also a local biholomorphism. Let \(J\) be the Jacobian determinant \(J = \det(\partial_{a_i} \rho_j / d\zeta_j)\). Then since \(\rho\) is a local biholomorphism, \(J(x) \neq 0\) for all \(x \in X_1\). Let \(\tilde{\rho}_j\) be the extension of \(\rho_j\) to \(\mathcal{X}_1\), and let \(\tilde{\rho} = (\tilde{\rho}_1, \ldots, \tilde{\rho}_n)\). Let \(\tilde{J}\) be the extension of \(J\) to \(\mathcal{X}_1\). Then \(\tilde{J} = \det(\partial_{\tilde{a}_1} \tilde{\rho}_j / d\zeta_j)\) and \(\tilde{J}(\mathcal{X}) \neq 0\) for all \(\mathcal{X} \in \mathcal{X}_1\). Hence \(\tilde{\rho}: \mathcal{X}_1 \rightarrow \mathcal{C}^n\) is a local biholomorphism and \(\tilde{\rho} \circ \beta_1 = \rho\).

Let \(F = \{ f \circ \phi; f \in B(X_2) \}\), and identify this with \(\{ f \circ \psi; \tilde{f} \in B(\mathcal{X}_2) = \mathcal{B}_2 \}\). It follows that \(\{ \tilde{X}_2; \mathcal{X}_2, \mathcal{B}_2 \}\) is the \(F\)-envelope of holomorphy of \(\rho: X_1 \rightarrow \mathcal{C}^n\). Now, any bounded holomorphic function on \(X_1\) can be extended to \(\tilde{\mathcal{X}}_1\) so that \(\tilde{\rho}: \tilde{\mathcal{X}}_1 \rightarrow \mathcal{C}^n\) is an \(F\)-extension of \(\rho: X_1 \rightarrow \mathcal{C}^n\) relative to \(\beta_1: X_1 \rightarrow \tilde{\mathcal{X}}_1\). Since \(\mathcal{X}_2: \tilde{X}_2 \rightarrow \mathcal{C}^n\) is the \(F\)-envelope of holomorphy of \(\rho: X_1 \rightarrow \mathcal{C}^n\), there exists a holomorphic map \(\tilde{\phi}: \tilde{\mathcal{X}}_1 \rightarrow \tilde{\mathcal{X}}_2\) such that \(\mathcal{X}_2 \circ \tilde{\phi} = \tilde{\rho}\) and \(\tilde{\phi} \circ \beta_1 = \psi\).

Corollary 6. Let \((X, A; a)\) be a Riemann domain and \((\beta; \mathcal{X}, \mathcal{X}; \tilde{\mathcal{X}}, \mathcal{B})\) its envelope of bounded holomorphy. Then for any analytic automorphism
Proposition 7 (H. Cartan). Let \((X, A; \alpha)\) be a Riemann domain and \(D\) a domain in \(X\). Let \(\{f_\nu\} \subset \text{Aut}(D)\) be a sequence of automorphisms of \(D\). Suppose that \(\{f_\nu\}\) converges uniformly on compact subsets of \(D\) to a holomorphic map \(f: D \to X\). Then the following conditions are equivalent.

(i) \(f \in \text{Aut}(D)\);
(ii) \(f(D) \notin \text{boundary of } D\);
(iii) there exists \(a \in D\) such that the Jacobian of \(f\) at \(a\) is nontrivial.

Theorem 8. Let \((X, A; \alpha)\) be a separable Riemann domain. Let \(D\) be a domain in \(X\) with \(\alpha(D)\) bounded in \(\mathbb{C}^n\). Let \(B(D)\) separate the points of \(D\). Suppose that there is a compact set \(K\) such that for any \(x \in D\) there is an analytic automorphism \(\sigma \in \text{Aut}(D)\) and a point \(a \in K\) with \(\sigma(x) = a\). Then \(D\) is a domain of bounded holomorphy.

Proof. Let \((\beta; \tilde{D}, \tilde{A}; \tilde{\alpha}, \tilde{B})\) be the envelope of bounded holomorphy of \(D\) so that \(\alpha = \tilde{\alpha} \circ \beta\). Then \(\beta\) is injective. To show the assertion, we have to show that \(\beta\) is surjective. Suppose this were false. Let \(\{x_\nu\}\) be a sequence of points of \(D\) which does not have a limit point in \(D\) and such that \(\{\beta(x_\nu)\}\) converges to a point \(q\) in the intersection of the boundary of \(\beta(D)\) and \(\tilde{D}\). Let \(a_\nu \in K\) and \(\sigma_\nu \in \text{Aut}(D)\) be such that \(\sigma_\nu(x_\nu) = a_\nu\). Let \(P\) be an \(\tilde{\alpha}\)-polydisc about \(q \in \tilde{D}\), with \(P\) relatively compact in \(\tilde{D}\) so that \(\tilde{\alpha}\) is biholomorphic on \(P\). By Corollary 6, there is an automorphism \(\tilde{\alpha}_\nu\) of \(\tilde{D}\) such that \(\tilde{\alpha}_\nu \circ \beta = \beta \circ \sigma_\nu\). Further, since \(\alpha(D)\) is bounded, \(\alpha\) is a bounded spread map on \(D\), that is, \(\alpha = (f_1, \ldots, f_n)\) with \(f_j\) bounded, so that \(\tilde{\alpha} = (\tilde{f}_1, \ldots, \tilde{f}_n)\) is bounded on \(\tilde{D}\) and \(\tilde{\alpha} \circ \tilde{\alpha}_\nu\) is bounded uniformly with respect to \(\nu\). Let \(P_\rho\) be the polydisc of radius \(\rho\) about \(q\) in \(P\). Then there is a constant \(c_\rho > 0\) such that for \(y \in P_\rho\), \(|\tilde{\alpha}_\nu(x) - \tilde{\alpha}_\nu(y)| \leq c_\rho\) for all \(x \in P_\rho\). Since \(\beta\) is injective, it follows that for sufficiently small \(\rho\) there is a compact subset \(L\) of \(D\) such that \(\sigma_\nu(\beta^{-1}(P_\rho \cap \beta(D))) = \sigma_\nu(\beta^{-1}(P_\rho)) \subset L\).

By passing to subsequences, let \(\sigma\) and \(\sigma': D \to \mathbb{C}^n\) be the uniform limits of \(\{\sigma_\nu\}\) and \(\{\sigma^{-1}_\nu\}\) on compact subsets of \(D\). Hence by Proposition 7, \(\sigma\), \(\sigma' \in \text{Aut}(D)\) and \(\sigma' \circ \sigma = \sigma \circ \sigma' = \text{identity}\). However, this is absurd, since \(\sigma^{-1}(a_\nu) = x_\nu\), so that if \(a\) is a limit point of \(\{a_\nu\}\) in \(K\), \(\sigma'(a) \in D\), but \(\{x_\nu\}\) has no limit point in \(D\). The theorem is proved.

Corollary 9. If \(\Gamma\) is a discrete subgroup of \(\text{Aut}(D)\) such that \(D/\Gamma\) is
compact, then \(D \) is a domain of bounded holomorphy.

Corollary 10. If \(D \) is a bounded homogeneous domain in \(\mathbb{C}^n \), then \(D \) is a domain of bounded holomorphy.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611