$\phi$-Postnikov systems and extensions of $H$-spaces
HTML articles powered by AMS MathViewer
- by Albert O. Shar
- Proc. Amer. Math. Soc. 49 (1975), 237-244
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367994-X
- PDF | Request permission
Abstract:
Let $f:X \to Y$ be a map of CW complexes and let $\pi :{F_f} \to X$ be the fibration induced by $f$. The following theorems are proven: Theorem. Assume $F( = {F_f})$ and $\Omega Y$ are simply connected and that (a) ${f^ \ast }:{H^n}(Y;{\pi _n}(Y)) \to {H^n}(X;{\pi _n}(Y))$ is epic for all $n$, (b) ${(i \wedge i)^ \ast }:{H^n}(F \wedge F;\operatorname {co} \ker {f_{{n^ \ast }}}) \to {H^n}(\Omega Y \wedge \Omega Y;\operatorname {co} \ker {f_{{n^ \ast }}})$ is monic for all $n$ (where ${f_{{n^ \ast }}}:{\pi _n}(X) \to {\pi _n}(Y))$). If $X$ is an $H$-space then $F$ is an $H$-space such that $\pi :F \to X$ is an $H$-map. Theorem. Assume $Y$ is $(p - 1)$-connected, $F$ is $(q - 1)$-connected $(p - 1 \geq 2,q - 1 \geq 1)$ of dimension $< \min (2p - 1,p + q - 1)$, and ${H^ \ast }(Y)$ is free. If $X$ is an $H$-space and ${f^ \ast }:{H^n}(Y) \to {H^n}(X)$ is onto for all $n$ then $F$ is an $H$-space and the map $\pi :F \to X$ is an $H$-map. Analogous theorems are shown to hold for loop spaces.References
- Donald W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432β450. MR 150777, DOI 10.1090/S0002-9947-1963-0150777-X
- James Dillon Stasheff, On extensions of $H$-spaces, Trans. Amer. Math. Soc. 105 (1962), 126β135. MR 178469, DOI 10.1090/S0002-9947-1962-0178469-0
- James Stasheff, $H$-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970. MR 0270372, DOI 10.1007/BFb0065896
- Emery Thomas, Seminar on fiber spaces, Lecture Notes in Mathematics, vol. 13, Springer-Verlag, Berlin-New York, 1966. Lectures delivered in 1964 in Berkeley and 1965 in ZΓΌrich; Berkeley notes by J. F. McClendon. MR 0203733, DOI 10.1007/BFb0097864
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 237-244
- MSC: Primary 55D45
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367994-X
- MathSciNet review: 0367994