## Coincidence point results for spaces with free $Z_{p}$-actions

HTML articles powered by AMS MathViewer

- by Fred Cohen and Ewing L. Lusk
- Proc. Amer. Math. Soc.
**49**(1975), 245-252 - DOI: https://doi.org/10.1090/S0002-9939-1975-0372846-5
- PDF | Request permission

## Abstract:

Let $X$ support a free cyclic group action of prime order. We consider the question of determining when any map $f:X \to Y$ must identify two points of an orbit, and that of finding the minimum possible dimension of the union of such orbits when they exist.## References

- Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Theodore Chang and Tor Skjelbred,
*Group actions on Poincaré duality spaces*, Bull. Amer. Math. Soc.**78**(1972), 1024–1026. MR**307226**, DOI 10.1090/S0002-9904-1972-13092-1 - Fred Cohen and J. E. Connett,
*A coincidence theorem related to the Borsuk-Ulam theorem*, Proc. Amer. Math. Soc.**44**(1974), 218–220. MR**331374**, DOI 10.1090/S0002-9939-1974-0331374-2 - J. E. Connett,
*A generalization of the Borsuk-Ulam theorem*, J. London Math. Soc. (2)**7**(1973), 64–66. MR**322856**, DOI 10.1112/jlms/s2-7.1.64 - P. E. Conner and E. E. Floyd,
*Differentiable periodic maps*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR**0176478** - Edward Fadell and Lee Neuwirth,
*Configuration spaces*, Math. Scand.**10**(1962), 111–118. MR**141126**, DOI 10.7146/math.scand.a-10517 - D. L. Johnson,
*On the cohomology of finite $2$-groups*, Invent. Math.**7**(1969), 159–173. MR**245680**, DOI 10.1007/BF01389799 - Saunders Mac Lane,
*Homology*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR**1344215** - Hans Jørgen Munkholm,
*Borsuk-Ulam type theorems for proper $Z_{p}$-actions on ($\textrm {mod}$ $p$ homology) $n$-spheres*, Math. Scand.**24**(1969), 167–185 (1970). MR**258025**, DOI 10.7146/math.scand.a-10928
T. Skjelbred, - Richard G. Swan,
*The $p$-period of a finite group*, Illinois J. Math.**4**(1960), 341–346. MR**122856**

*A lemma on the spectral sequence of the action of a finite group with periodicity*(unpublished).

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**49**(1975), 245-252 - MSC: Primary 55C20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372846-5
- MathSciNet review: 0372846