ON A NONUNIFORM PARABOLIC EQUATION WITH MIXED BOUNDARY CONDITION

C. V. PAO

ABSTRACT. This paper discusses the existence of weak solutions for an initial boundary-value problem of a nonuniform second order parabolic equation in which the coefficient \(b(t, x) \) of \(u_t \) is nonnegative and the coefficient matrix \((a_{ij}(t, x)) \) of the elliptic part is not necessarily positive definite. When \(b(t, x) = 0 \), this problem is reduced to a degenerate elliptic system. A discussion of the existence of weak solutions for the degenerate elliptic boundary-value problem from the parabolic system is included.

1. Introduction. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) and let \(\Gamma = \Gamma_1 \cup \Gamma_2 \) be the boundary of \(\Omega \). We consider the initial boundary-value problem:

\[
Lu = b(t, x)u_t - \sum_{i,j=1}^{n} (a_{ij}(t, x)u_{x_i}u_{x_j}) + c(t, x)u = f(t, x) \quad (t \in (0, T], x \in \Omega),
\]

\[
\frac{\partial u}{\partial \nu} + \beta(t, x)u = 0 \quad (t \in (0, T], x \in \Gamma_1),
\]

\[
u(t, x) = 0 \quad (t \in (0, T], x \in \Gamma_2),
\]

\[
u(0, x) = u_0(x) \quad (x \in \Omega),
\]

where \(\beta(t, x) \geq 0 \) and \(\partial/\partial \nu \) denotes the conormal derivative on \(\Gamma_1 \), that is,

\[
\frac{\partial u}{\partial \nu} = \sum_{i,j=1}^{n} n_i(t, x)a_{ij}(t, x) \frac{\partial u}{\partial x_j} \quad (t \in (0, T], x \in \Gamma_1),
\]

with \((n_1, \ldots, n_n) \) being the outer unit normal vector on \(\Gamma_1 \). It is assumed that \(a_{ij} = a_{ji} \) which together with \(b, b', c, f \) are bounded measurable real...
functions in $D \equiv (0, T] \times \Omega$. The functions β, u_0 are assumed bounded measurable in $(0, T] \times \Gamma_1$ and Ω, respectively. The operator L is uniformly parabolic if the function b is positive and the matrix $A \equiv (a_{ij})$ is positive definite on \overline{D}, the closure of D. In this paper, we study a nonuniform parabolic operator in the sense that b is nonnegative and A is positive semidefinite on \overline{D}. Specifically, we study the existence of weak solutions for the system (1.1)--(1.3) for the case where

$$b(t, x) \geq 0, \quad \sum_{i,j=1}^{n} a_{ij}(t, x)\xi_i\xi_j \geq 0,$$

(1.4)

$$((t, x) \in \overline{D}, \xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n).$$

Thus either b or a_{ij} (or both) may assure zero values inside the domain D. In addition, we allow either Γ_1 or Γ_2 of the boundary surface Γ to be empty. In this situation, only one of the conditions in (1.2) appears.

When $b(t, x) \equiv 0$ in D the system (1.1)--(1.3) is reduced to the boundary-value problem:

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_j})_{x_i} + c(x)u = f(x) \quad (x \in \Omega),$$

$$\partial u/\partial \nu + \beta(x)u = 0 \quad (x \in \Gamma_1),$$

(1.5)

$$u(x) = 0 \quad (x \in \Gamma_2).$$

(1.6)

By considering the above nonuniform elliptic system as a degenerate case of the parabolic system (1.1)--(1.3), we deduce a similar result for the problem (1.5), (1.6).

Nonuniform parabolic equations in the form of (1.1)--(1.3) have been studied by Ford [1] for the case where A is a strictly positive scalar function and by Ivanov [2] for the case $b(t, x) \equiv 1$ in D. In both papers, the boundary condition is of Dirichlet type. On the other hand, much work has been done on the degenerate elliptic system (1.5), (1.6). To list a few we refer to the work in [3]--[7]. In most cases, however, the matrix A is assumed to satisfy the condition

$$\nu(x)|\xi|^2 \leq \sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \leq \mu(x)|\xi|^2 \quad (\xi \in \mathbb{R}^n),$$

where ν, μ are positive in Ω and can be zero only on the boundary of Ω. Our assumption allows ν, μ to be zero inside Ω. In fact, our treatment
includes the trivial case where \(A \) is the zero matrix, that is, \(a_{ij}(x) = 0 \) in \(D \).

2. The main results. Let \(H = \{ \phi \in C^2(\overline{D}); \phi(t, x) = 0 \text{ on } (0, T) \times \Omega \text{ and } \phi(T, x) = 0 \text{ in } \Omega \} \), where \(C^2(\overline{D}) \) denotes the set of twice continuously differentiable real functions on \(\overline{D} \). For any \(\phi, \psi \in H \) we set

\[
\langle \phi, \psi \rangle = \int_D \phi(t, x)\psi(t, x) \, dz, \quad \| \phi \| = \langle \phi, \phi \rangle^{1/2},
\]

\[
\langle \phi, \psi \rangle_A = \int_D \sum_{i,j=1}^n a_{ij}(t, x)\phi_x(t, x)\psi_x(t, x) \, dz, \quad \| \phi \|_A = \langle \phi, \phi \rangle_A^{1/2},
\]

\[
\langle \phi, \psi \rangle_\Gamma = \int_0^T \int_\Gamma \beta(t, x)\phi(t, x)\psi(t, x) \, dz, \quad \| \phi \|_\Gamma = \langle \phi, \phi \rangle_\Gamma^{1/2},
\]

\[
\langle \phi, \psi \rangle_b = \int_\Omega b_0(0, x)\phi(0, x)\psi(0, x) \, dx, \quad \| \phi \|_b = \langle \phi, \phi \rangle_b^{1/2},
\]

where \(dz = dt dx \). For \(\phi, \psi \in C^2(\overline{\Omega}) \), the set of twice differentiable functions which vanish on \(C_2 \), we write

\[
\langle \phi, \psi \rangle' = \int_\Omega \phi(x)\psi'(x) \, dx, \quad \| \phi \|' = ((\phi, \phi)')^{1/2},
\]

and similar definitions for \(\langle \phi, \psi \rangle_A', \langle \phi, \psi \rangle_\Gamma' \). Define

\[
(2.1) \quad \langle \phi, \psi \rangle_H = \langle \phi, \psi \rangle_A + \langle \phi, \psi \rangle_\Gamma + \langle (c - b_1/2)\phi, \psi \rangle + \frac{1}{2} \langle \phi, \psi \rangle_b
\]

Then \(\langle \cdot, \cdot \rangle_H \) is a symmetric bilinear functional on \(H \times H \). Assume, for some constant \(\delta > 0 \),

\[
(2.2) \quad \langle \phi, \phi \rangle_H \geq \delta \langle \phi, \phi \rangle \quad (\phi \in H).
\]

Then \(\langle \cdot, \cdot \rangle_H \) defines an inner product in \(H \). We denote the completion of \(H \) with respect to the norm \(\| \phi \|_H = \langle \phi, \phi \rangle_H^{1/2} \) by \(H^* \).

A function \(u \in H^* \) is said to be a weak solution of the problem (1.1)—(1.3) if

\[
(2.3) \quad \langle u, \phi \rangle_A + \langle u, \phi \rangle_\Gamma + \langle u, c\phi \rangle - \langle u, (b\phi)_t \rangle - \langle u_0, \phi \rangle_b = \langle f, \phi \rangle \quad \text{for all } \phi \in H.
\]

Our main result for the existence problem of (1.1)—(1.3) is the following:

Theorem 1. Let \(b(t, x) \geq 0 \) and the matrix \(A = (a_{ij}) \) be positive semi-definite in \(\overline{D} \). If the condition (2.2) holds, then the problem (1.1)—(1.3) has a weak solution \(u \in H^* \).
Remarks. (i) The condition (2.2) is fulfilled if there exists a constant
\[b_0 > 0 \]
such that
\[2c(t, x) - b_t(t, x) \geq b_0 \quad ((t, x) \in D, \text{a.e.}). \]
Furthermore, if we transform the problem (1.1)–(1.3) by \(u \rightarrow e^{-\lambda t} u \), where \(\lambda \) is a constant, then (2.4) may be replaced by the weaker condition:
\[2(c + \lambda b) - b_t \geq b_0 \quad \text{a.e. in } D \text{ for some } \lambda. \]
In particular, if \(b(t, x) \geq b_1 > 0 \) in \(D \) for some constant \(b_1 > 0 \), then (2.4) (and thus (2.2)) is satisfied by choosing a sufficiently large \(\lambda \).

(ii) In case the matrix \(A \) is positive definite in \(\overline{D} \) then
\[\langle \phi, \phi \rangle_A = \int_D \sum_{i,j=1}^n a_{ij} \phi_{x_i} \phi_{x_j} \, dz \geq d_0 \int \sum_{i=1}^n |\phi_{x_i}|^2 \, dz \]
for some constant \(d_0 > 0 \). Using the inequality
\[\int_D \sum_{i=1}^n |\phi_{x_i}|^2 \, dz \geq \gamma \int_D |\phi|^2 \, dz \quad (\gamma > 0) \]
for functions \(\phi \) satisfying \(\phi(t, x) = 0 \) on \((0, T] \times \Gamma\), we obtain \(\langle \phi, \phi \rangle_A \geq d_0 \gamma \|\phi\|^2 \), where \(\gamma > 0 \) is a constant depending only on \(\Omega \) (\(\gamma = \pi^2/l^2 \) for \(\Omega = (0, l)^n \)). Thus (2.2) is satisfied if
\[2(c + d_0 \gamma) - b_t \geq b_0 \quad \text{in } D \text{ a.e.} \]
In this situation, the problem (1.1)–(1.3) (with \(\Gamma = \Gamma_2 \)) has a weak solution which is a direct extension of the result given in [1]. We remark that since \(b \) depends on \(t \), a change of scale in \(t \) does not always insure the condition (2.5).

It will be shown in the following section that if we let
\[B[u, \phi] = \langle u, \phi \rangle_A + \langle u, \phi \rangle_T + \langle u, c \phi - (b \phi)_t \rangle \quad (\phi \in H), \]
then there is a unique closable linear operator \(S: H \to H^* \) such that
\[B[u, \phi] = \langle u, S \phi \rangle_H \quad \text{for all } u \in H^*, \phi \in H. \]
Denote the closure of \(S \) by \(\overline{S} \) and the range of \(\overline{S} \) by \(R(\overline{S}) \); then we have

Theorem 2. Let the conditions in Theorem 1 be satisfied and let \(u, v \) be any two weak solutions of the problem (1.1)–(1.3). Then there is a \(v_0 \in R(\overline{S})^* \) such that \(u = v + v_0 \), where \(R(\overline{S})^* \) is the dual space of \(R(\overline{S}) \).
When \(b(t, x) = 0 \) the last two terms in the bilinear form (2.1) are reduced to \(\langle c\phi, \psi \rangle \). This leads to the definition of an inner product on \(C^2(\Omega) \) for the boundary-value problem (1.5), (1.6) by the relation

\[
(2.8) \quad \langle \phi, \psi \rangle_H = \langle \phi, \psi \rangle_A + \langle \phi, \psi \rangle_T + \langle c\phi, \psi \rangle \quad (\phi, \psi \in C^2(\Omega)).
\]

The condition (2.2) is reduced to

\[
(2.9) \quad \langle \phi, \phi \rangle_H \geq \delta \langle \phi, \phi \rangle \quad (\phi \in C^2(\Omega)),
\]

and the equation (2.6) becomes

\[
B_1[u, \phi] = \langle u, \phi \rangle_H \quad (\phi \in C^2(\Omega)).
\]

We denote the completion of \(C^2(\Omega) \) (open with respect to \(\|\phi\|_H = \langle \langle \phi, \phi \rangle \rangle^{1/2} \)) by \(\tilde{H} \) and say that \(u \in \tilde{H} \) is a weak solution of (1.5), (1.6) if

\[
(2.10) \quad \langle u, \phi \rangle_A' + \langle u, \phi \rangle_T' + \langle u, c\phi \rangle' = \langle f, \phi \rangle' \quad (\phi \in C^2(\Omega)).
\]

By considering (2.10) as a degenerate case of (2.3) we obtain

Theorem 3. Let \(A = (a_{ij}) \) be positive semidefinite on \(\Omega \) and let the condition (2.9) be satisfied. Then the problem (1.5), (1.6) has a unique weak solution \(u \in H \).

Remark. The problem (1.5), (1.6) still has a solution even when \(A \) is the zero matrix. For instance, if \(\Gamma = \Gamma_2 \) then the condition (2.9) requires that \(c(t, x) \geq c_0 > 0 \) in \(D \), and thus the function \(u = f/c \) in \(D \) and \(u = 0 \) on \((0, T) \times \Gamma \) is the desired solution.

3. **Proof of the theorems.** Using the definition of \(B[u, \phi] \) defined in (2.6), equation (2.3) becomes

\[
(3.1) \quad B[u, \phi] = F_{f, u_0}(\phi) \quad (\phi \in H),
\]

where

\[
(3.2) \quad F_{f, u_0}(\phi) = \langle f, \phi \rangle + \langle u_0, \phi \rangle_b.
\]

Thus for the existence problem of (1.1)—(1.3) it suffices to show the existence of \(u \in H^* \) satisfying (3.1). For this purpose we prepare the following

Lemma 1. For each \(\phi \in H, B[\cdot, \phi] \) defines a bounded linear functional on \(H \). Furthermore,

\[
(3.3) \quad B[\phi, \phi] = \|\phi\|_H^2 \quad (\phi \in H).
\]
Proof. Let \(\Phi_x = (\phi_{x_1}, \ldots, \phi_{x_n}) \), \(\Psi_x = (\psi_{x_1}, \ldots, \psi_{x_n}) \) and let \((\cdot, \cdot)\) denote the Euclidean inner product in \(\mathbb{R}^n \). Since \(A \) is symmetric, positive semidefinite there exists a unique symmetric square root \(A^{\frac{1}{2}} \) such that

\[
(A\Phi_x, \Phi_x) = (A^{\frac{1}{2}} \Psi_x, A^{\frac{1}{2}} \Phi_x).
\]

By the Schwarz inequality,

\[
(\psi, \phi)_A = \left| \int_D (A\Psi_x, \Phi_x) \, dz \right| \leq \left(\int_D |A^{\frac{1}{2}} \Psi_x|^2 \, dz \right)^{\frac{1}{2}} \left(\int_D |A^{\frac{1}{2}} \Phi_x|^2 \, dz \right)^{\frac{1}{2}}
= \left(\int_D (A\Psi_x, \Psi_x) \, dz \right)^{\frac{1}{2}} \left(\int_D (A\Phi_x, \Phi_x) \, dz \right)^{\frac{1}{2}} = \|\psi\|_A \|\phi\|_A.
\]

Since \(|(0, 0)| < \|0\|_r \|0\|_r\) and \(|(0, c_0 - (0, c_0)| < \|c_0 - (c_0)| \|0\|_r\|0\|_r\|
we see from (2.6), (3.4), (2.2) that

\[
|\langle \psi, \phi \rangle| \leq k_\phi \|\psi\|_H \quad (\psi \in H),
\]

where \(k_\phi \) is a constant depending only on \(\phi \) and the coefficients of \(L \).

Hence \(B[\cdot, \phi] \) is a bounded linear functional on \(H \). Equation (3.3) follows from (2.1), (2.6) and the identity

\[
\langle \phi, (b\phi)_t \rangle = \frac{1}{2} \langle \langle b_t \phi, \phi \rangle - \langle \phi, \phi \rangle \rangle \quad (\phi \in H).
\]

This proves the lemma.

Proof of Theorem 1. In view of Lemma 1, we can extend \(B[\cdot, \phi] \) to a bounded linear functional on \(H^* \). By the Riesz representation theorem there exists \(S\phi \in H^* \) such that

\[
B[u, \phi] = \langle u, S\phi \rangle_H \quad \text{for all } u \in H^*, \phi \in H.
\]

Clearly, \(S \) is a linear closable operator on \(H \) to \(H^* \). Since by Lemma 1 and (3.7),

\[
\langle S\phi, \phi \rangle_H = \langle \phi, \phi \rangle_H \quad (\phi \in D(S) = H),
\]

we see from the closure property of \(\overline{S} \) that

\[
\langle \overline{S}\phi, \phi \rangle_H = \langle \phi, \phi \rangle_H \quad (\phi \in D(\overline{S})).
\]

This implies that \(\overline{S} \) has a continuous inverse and thus, by the closed range theorem, \(R(\overline{S}^*) = H^* \), where \(\overline{S}^* \) is the adjoint operator on \(\overline{S} \). On the other hand, from

\[
|F_{f, u_0}(\phi)| \leq \|f\| \|\phi\| + \|u_0\|_b \|\phi\|_b \leq \gamma \|\phi\|_H \quad (\phi \in H)
\]

for some \(\gamma < \infty \), we can extend \(F_{f, u_0} \) to a continuous linear functional on \(H^* \). Hence there exists \(\psi \in H^* \) such that
A NONUNIFORM PARABOLIC EQUATION

(3.10) \[F_{f,u_0}(\phi) = \langle v, \phi \rangle_H \] for all \(\phi \in H \).

Since \(R(\bar{S}^*) = H^* \) there exists \(u \in D(\bar{S}^*) \) such that \(\bar{S}^* u = v \). It follows from (3.7), (3.10) that for any \(\phi \in H \),

\[B[u, \phi] = \langle u, \bar{S}\phi \rangle_H = \langle \bar{S}^* u, \phi \rangle_H = \langle v, \phi \rangle_H = F_{f,u_0}(\phi). \]

This shows that \(u \) is the desired solution.

Proof of Theorem 2. Since both functions \(u, v \) satisfy (3.1) with the same \(f, u_0 \) we see from (3.7) that

(3.11) \[0 = B[u - v, \phi] = \langle u - v, S\phi \rangle_H \quad (\phi \in H). \]

The above relation implies

(3.12) \[\langle u - v, \bar{S}\phi \rangle_H = 0 \quad (\phi \in D(\bar{S})). \]

Hence \(u - v \in R(\bar{S}) \), which proves the theorem.

Proof of Theorem 3. The proof of existence follows from the same argument as for the problem (1.1)–(1.3) with \(b \equiv 0 \). The uniqueness problem follows from

\[0 = B_1[u - v, \phi] = \langle u - v, \phi \rangle_H \quad (\phi \in C^2(\Omega)) \]

and the fact that \(C^2(\Omega) \) is dense in \(\tilde{H} \).

REFERENCES