ABSTRACT. Let χ be the canonical conjugation in the Steenrod algebra \mathfrak{A}_2. I prove the identity

$$Sq^{2n} + \chi(Sq^n) = Sq^{2n-1} \chi(Sq^{n-1})$$

and generalizations of this identity both in \mathfrak{A}_2 and in \mathfrak{A}_p where p is an odd prime.

The canonical conjugation χ in the mod 2 Steenrod algebra \mathfrak{A}_2 can be defined by Thom's recursion formula

$$\sum_{i=0}^{n} Sq^i \chi(Sq^{n-i}) = 0$$

together with the stipulation that $\chi: \mathfrak{A}_2 \to \mathfrak{A}_2$ be an anti-isomorphism [3]. Since the elements Sq^{2n} multiplicatively generate \mathfrak{A}_2, we can calculate χ if we can calculate $\chi(Sq^{2n})$ for all n. The above recursion formula is unnecessarily cumbersome for this goal. In fact, the recursion can be shortened considerably by use of the following interesting

Identity. $Sq^{2n} + \chi(Sq^n) = Sq^{2n-1} \chi(Sq^{2n-1})$ for all positive integers n.

Applying the identity recursively we obtain the

Formula.

$$\chi(Sq^{2n}) = Sq^{2n} + \sum_{i=1}^{n-1} \left(\prod_{j=1}^{i} Sq^{2n-j} \right) Sq^{2n-i}.$$

For example,

$$\chi(Sq^{16}) = Sq^{16} + Sq^8 Sq^8 + Sq^8 Sq^4 Sq^4 + Sq^8 Sq^4 Sq^2 Sq^2.$$

In this paper, I will prove a theorem which will imply the above identity, and which also yields results about the mod p Steenrod algebra \mathfrak{A}_p when p is an odd prime. The technique is to use Milnor's calculation of χ in the
Milnor basis for \mathcal{G}_p [2], together with properties of binomial coefficients mod p. This technique was noticed independently by Donald Davis, who used it to prove other identities involving χ in \mathcal{G}_p [1].

Let p be a fixed prime. Let $R = (r_1, r_2, \ldots)$ be a sequence of non-negative integers with only a finite number of nonzero terms. For each such R there is an element \mathcal{P}^R in the Milnor basis for \mathcal{G}_p, of degree $\sum_{i \geq 1} 2(p^i - 1)r_i$ (if $p = 2$, the element is written Sq^R and its degree is $\sum_{i \geq 1} (2^i - 1)r_i$). We define $|R| = \sum_{i \geq 1} p^{i-1}r_i$. Then Davis’ main proposition can be written.

Proposition 1. $\mathcal{P}^m \chi(\mathcal{P}^n) = (-1)^n \sum_{R \in \mathcal{P}} (\frac{|R|}{m})^R$ where the sum is taken over all R such that \mathcal{P}^R has the proper degree, i.e. over all R such that

$$\sum_{i \geq 1} (p^i - 1)r_i = (p - 1)(m + n).$$

If $p = 2$, the only necessary modification is to write Sq for \mathcal{P}. The binomial coefficient is, of course, to be interpreted mod p.

Proof. See [1]. □

The one additional fact about binomial coefficients which we will need is

Proposition 2. Let a and b be integers. If $p^a \leq r < p^ab$, then

$$\sum_{k=0}^{b} (-1)^k \binom{r}{p^ak} \equiv 0 \pmod{p}.$$

Proof. Write $r = p^as + t$, with $1 \leq s \leq b$ and $0 \leq t < p^a$.

Then

$$\binom{p^as + t}{p^ak} \equiv \binom{s}{k} \pmod{p},$$

as is easily seen by comparing the coefficients of x^{p^ak} in the congruence

$$(1 + x)^{p^as + t} \equiv (1 + x^{p^a})^s(1 + x)^t \pmod{p}.$$

Hence the proposition follows from the well-known identity $\sum_{k=0}^{b} (-1)^k \binom{s}{k} = 0$ for $1 \leq s \leq b$. □

We can now prove our main

Theorem. Let $a \geq 0$ and $b > 1$ be integers. Then

$$\sum_{k=0}^{b} \mathcal{P}^{p^ak} \chi(\mathcal{P}^{p^a(b-k)}) = 0.$$

Examples. (1) If $a = 0$, we get Thom’s original recursion formula in \mathcal{G}_p.

(2) If $p = 2$, $a = n - 1$, $b = 2$, we get the identity at the beginning of this paper.
(3) If $p = 2$, $a = 2$, $b = 3$, we get
\[\chi(Sq^{12}) + Sq^4\chi(Sq^8) + Sq^8\chi(Sq^4) + Sq^{12} = 0. \]

(4) If $p = 3$, $a = 2$, $b = 3$, we get
\[\chi(P^{27}) + P^9\chi(P^{18}) + P^{18}\chi(P^9) + P^{27} = 0. \]

Proof of Theorem. Consider any $\beta = (\beta_1, \beta_2, \ldots)$ such that $\beta \geq 1$.

The coefficient of \bar{P}^R in the Milnor base expansion of the sum in the Theorem is, by Proposition 1,
\[\sum_{k=0}^{b} (-1)^b \bar{P}^{a(b-k)} \left(\frac{|R|}{p^{a_k}} \right) = (-1)^b \sum_{k=0}^{b} (-1)^k \left(\frac{|R|}{p^{a_k}} \right). \]

By Proposition 2, this coefficient is zero if $p^a \leq |R| \leq p^{ab}$. But (*) gives that
\[|R| = \sum_{i \geq 1} p^{i-1} r_i = \frac{1}{p} \left[(p - 1)p^{ab} + \sum_{i \geq 1} r_i \right] \]
and we also have
\[0 \leq \sum_{i \geq 1} r_i \leq \frac{1}{p - 1} \sum_{i \geq 1} (p^i - 1)r_i = p^ab. \]

Hence $((p - 1)/p)p^{ab} \leq |R| \leq p^{ab}$; and since $b > 1$, the required inequality holds. \(\Box\)

BIBLIOGRAPHY