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ABSTRACT.      We give short proofs to show that under various

positivity assumptions on the curvature of a Kahler surface  A",  it is

biholomorphically equivalent to P  (C).   In particular, the case of

S-holomorphic pinching >Vi (Theorem 1) is best possible and, we

believe, new.

Let  X be a compact Kahler manifold of complex dimension 2.   Given

a real two-dimensional subspace  p of the real tangent space of X at some

point, we denote by  K(p) the Riemannian curvature of p.   X is called

8-homomorphically pinched if there is some constant A > 0 such that

8A < K(p) < A for all holomorphic planes p, i.e. for all planes p invariant

under the complex structure endomorphism  /.   Given two holomorphic planes
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p and p ,  the holomorphic bisectional curvature  H(p, p') associated to  p

and p'   is defined to be  R(X, ]X, Y, JY) where X and   Y ate unit vectors

in p and p', respectively, and   R  is the Riemannian curvature tensor.   For

further details see Kobayashi and Nomizu [ll].

Theorem 1.    // X  z's 8-homomorphically pinched,  8 > l/2,  then  X is

bibolomorphically homeomorphic to   P .(C).

Theorem 2 (Andreotti-Frankel).   // X has positive sectional curvature,

i.e.   K(p) > 0 for all p,   then  X is biholomorphically homeomorphic to  P (C).

Theorem 2' (Goldberg-Kobayashi).    // X has positive holomorphic

bisectional curvature, then  X is biholomorphically homeomorphic to P (C).

Remarks. In Theorem 1, the number % cannot be reduced, since the

metric product P AC) x P ÄC) with the Fubini-Study metric on each factor

has holomorphic pinching Y2. Theorem 2 is due to Andreotti and Frankel

(Frankel [4]); their proof and the proof by Goldberg and Kobayashi of the

closely related Theorem 2' (Goldberg and Kobayashi [5]) as well depend

upon the classification of algebraic surfaces. Our proofs are quite short

and are independent of the classification theory.

Proof of Theorems 1, 2 and 2 .   Since the proofs of the three theorems

are very similar, we give the proofs together.   Suppose that  X  satisfies

the hypothesis of one of the Theorems 1, 2, or 2 '.   Then:

(a) The Ricci tensor of  X is positive definite.   This fact follows

immediately under the hypothesis of positivity of sectional curvature and

follows from curvature computations given in Berger [l] and Goldberg-

Kobayashi [5] under the hypotheses of  5-holomorphic pinching,   8 > V2,  and

positivity of holomorphic bisectional curvature, respectively.

(b) H2(X, R) = R.    This result, which is proved using a technique of

Bochner and Lichnerowicz, is proved under the hypothesis of  S-holomorphic

pinching,  S > lA,  by Bishop and Goldberg [2] and under the hypothesis of

positivity of holomorphic bisectional curvature by Goldberg and Kobayashi

[5].
(c) X is simply connected.   A theorem of Kobayashi (Kobayashi [lO])

states that any compact  Kahler manifold with positive definite Ricci tensor

is simply connected; thus (c) follows from (a).

(d) The first Chern class   c  (X) is a positive multiple of the Kahler

class of X.   This statement follows from (a) and (b) and the standard formula
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expressing the Chern classes in terms of the curvature form (Chern [3]).

Using these facts we can compute the first Chern and Pontrjagin classes

of  X.   Since   X is simply-connected,   H (X: Z) is free, by the universal

coefficient theorem; since the second Betti number of  X is   1,  H (X: Z) is

infinite cyclic.   Choose  ¿; to be the generator which is a positive multiple

of the Kahler class <y.   By Poincaré duality,   <f2   is a generator for  H (X: Z).

In fact it is the class dual to the orientation class, i.e., <f [X] = 1.    This is

because   <f    is a positive multiple of (o A &>,  which is a positive multiple

of the volume form.   Thus the integral cohomology ring is easily seen to

be  H\X: Z) = Z[£]/(^)-X

Therefore the signature of  X is    1, and by the Hirzebruch-Thom theorem

[6] the first Pontrjagin class  p (X) = 3f  .   Now we have the relation

cAX)2 = 2c.(X) + p.(X).   (This relation is valid quite generally for complex

vector-bundles-see Hirzebruch [6, Chapter l], or Hirzebruch and Hopf [7]

for the case of  4-manifolds.)   In the case at hand,   c AX) is the Euler class,

so c (X)2 = 9¿T2.   Since  c  (X) is a positive multiple of  çf,   c (X) = 3¿f.

One can now apply the argument of Hirzebruch and Kodaira [8] as given

for example in Morrow [13].   Morrow shows that if  X is homeomorphic to

PAC) and the first Chern class is positive, then  X is necessarily biholo-

morphically homeomorphic to  P AC).   However, the assumption that  X is

homeomorphic to   PAC) is actually used only to calculate the  A-genus of

X and thence the Chern class  c.(X).   Since we already know  c^X) and

p AX) we can continue the reasoning without the homeomorphism assumption:

Since   £ is of the type (1, 1), there is a holomorphic complex line bundle

E —' X corresponding to  cf.   By the Riemann-Roch theorem and the Kodaira

vanishing theorem, one finds that dimrr(F) = dimr H (X, 0(E)) = 3 and that,

for some large integer  s, Es  is ample.   Then the "meromorphic" map <p:

X — PAC) given by three linearly independent sections  it/>., c/j  , <f>  \ of  E

can be shown by a standard argument using the Segre embedding to be a

biholomorphic homeomorphism (Morrow [13, pp. 319—320]; cf. Howard [9],

Kobayashi and Ochiai [12]).

1 This already implies that  X has the homotopy type of  CP -,  since   n (X) = 0.

However, we do not need this.
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