An ergodic super-property of Banach spaces defined by a class of matrices
HTML articles powered by AMS MathViewer
- by A. Brunel, H. Fong and L. Sucheston
- Proc. Amer. Math. Soc. 49 (1975), 373-378
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365180-0
- PDF | Request permission
Abstract:
A matrix $({a_{ni}})$ is called an $R$-matrix if (A) ${\Sigma _i}{a_{ni}} \nrightarrow 0$, and (B) ${\lim _n}{a_{ni}} = 0$ for each $i$. A Banach space $X$ is called $R$-ergodic if for each isometry $T$ and each $x \in X$, there is an $R$-matrix $({a_{ni}})$ such that ${\Sigma _i}{a_{ni}}{T^i}x\xrightarrow {{\text {W}}}$ (converges weakly). Given two Banach spaces $F$ and $X$, write $F{\text { fr }}X$ if for each finite-dimensional subspace $F’$ of $F$ and $\epsilon > 0$, there is an isomorphism $V$ from $F’$ onto a subspace of $X$ such that $\left | {||x|| - ||Vx||} \right | < \epsilon$ for each $x \in F’$ with $||x|| \leq 1$. $X$ is called super-$R$-ergodic if $F$ is $R$-ergodic for each $F{\text { fr }}X$. Theorem. $X$ is super-$R$-ergodic if and only if $X$ is super-reflexive. The proof is based on the following: Theorem. Let $T$ be a linear operator on $X,({a_{ni}})$ a matrix satisfying (A), $x \in X$ such that ${\Sigma _i}{a_{ni}}{T^i}x\xrightarrow {{\text {W}}}\bar x$. Then there is a constant $\alpha$ such that $(x - a\bar x) \in \overline {(I - T)X}$.References
- Antoine Brunel and Louis Sucheston, On $B$-convex Banach spaces, Math. Systems Theory 7 (1974), no. 4, 294–299. MR 438085, DOI 10.1007/BF01795947 —, Sur quelques conditions équivalentes à la super-réflexivité dans les espaces de Banach, C. R. Acad. Sci. Paris Sér A-B 275 (1972), A993-A994. MR 47 #7389.
- Antoine Brunel and Louis Sucheston, On $J$-convexity and some ergodic super-properties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79–90. MR 380361, DOI 10.1090/S0002-9947-1975-0380361-2
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Togo Nishiura and Daniel Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53–57. MR 155167, DOI 10.4064/sm-23-1-53-57
- A. Pełczyński, A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (1961/62), 371–374. MR 146636, DOI 10.4064/sm-21-3-370-374
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- Daniel Waterman, Reflexivity and summability. II, Studia Math. 32 (1969), 61–63. MR 246093, DOI 10.4064/sm-32-1-61-63
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 373-378
- MSC: Primary 47A35; Secondary 28A65
- DOI: https://doi.org/10.1090/S0002-9939-1975-0365180-0
- MathSciNet review: 0365180