Lusin sets and well ordering the continuum
HTML articles powered by AMS MathViewer
- by David Pincus and Karel Prikry
- Proc. Amer. Math. Soc. 49 (1975), 429-435
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366667-7
- PDF | Request permission
Abstract:
A Lusin set is constructed in a model of set theory which lacks a well ordering of the continuum.References
- Paul J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR 0232676 J. Derrick and F. Drake, A model of ZF set theory with $\aleph ({2^\omega }) = {\aleph _\omega }$, J. Symbolic Logic 32 (1967), 559. (abstract)
- S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1964/65), 325–345. MR 176925, DOI 10.4064/fm-56-3-325-345
- J. D. Halpern and A. Lévy, The Boolean prime ideal theorem does not imply the axiom of choice. , Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 83–134. MR 0284328
- Casimir Kuratowski, Topologie. Vol. I, Monografie Matematyczne, Tom XX, Polskie Towarzystwo Matematyczne, Warszawa, 1952 (French). 3ème ed. MR 0054937
- David Pincus, The strength of the Hahn-Banach theorem, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972) Lecture Notes in Math., Vol. 369, Springer, Berlin, 1974, pp. 203–248. MR 0476512
- K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970), 55. MR 262075
- Gerald E. Sacks, Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer. Math. Soc. 142 (1969), 381–420. MR 253895, DOI 10.1090/S0002-9947-1969-0253895-6
- Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 265151, DOI 10.2307/1970696
- P. Vopěnka and K. Hrbáček, The consistency of some theorems on real numbers, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 107–111 (English, with Russian summary). MR 225662
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 429-435
- MSC: Primary 02K20; Secondary 04A15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366667-7
- MathSciNet review: 0366667