On Euler’s criterion for cubic nonresidues
HTML articles powered by AMS MathViewer
- by Kenneth S. Williams
- Proc. Amer. Math. Soc. 49 (1975), 277-283
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366792-0
- PDF | Request permission
Abstract:
If $p$ is a prime $\equiv 1 \pmod 3$ there are integers $L$ and $M$ such that $4p = {L^2} + 27{M^2},L \equiv 1\pmod 3$. Indeed $L$ and ${M^2}$ are unique. If $D$ is a cubic nonresidue $\pmod p$ it is shown how to choose the sign of $M$ so that \[ {D^{(p - 1)/3}} \equiv (L + 9M)/(L - 9M)\pmod p.\] The case $D = 2$ has been treated by Emma Lehmer.References
- N. C. Ankeny, Criterion for $r$th power residuacity, Pacific J. Math. 10 (1960), 1115–1124. MR 118708, DOI 10.2140/pjm.1960.10.1115
- L. E. Dickson, Cyclotomy, Higher Congruences, and Waring’s Problem, Amer. J. Math. 57 (1935), no. 2, 391–424. MR 1507083, DOI 10.2307/2371217
- Kenneth Ireland and Michael I. Rosen, Elements of number theory. Including an introduction to equations over finite fields, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1972. MR 0554185
- Emma Lehmer, Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20–29. MR 95162, DOI 10.1112/S0025579300001303
- Emma Lehmer, On Euler’s criterion. part 1, J. Austral. Math. Soc. 1 (1959/1961), no. part 1, 64–70. MR 0108475, DOI 10.1017/S1446788700025076
- J. B. Muskat, On the solvability of $x^{e}\equiv e\,(\textrm {mod}\,p)$, Pacific J. Math. 14 (1964), 257–260. MR 159781
- Thomas Storer, Cyclotomy and difference sets, Lectures in Advanced Mathematics, No. 2, Markham Publishing Co., Chicago, Ill., 1967. MR 0217033
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 277-283
- MSC: Primary 10A10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366792-0
- MathSciNet review: 0366792