Number fields with prescribed $l$-class groups
HTML articles powered by AMS MathViewer
- by Frank Gerth
- Proc. Amer. Math. Soc. 49 (1975), 284-288
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366871-8
- PDF | Request permission
Abstract:
Let $G$ be any finite elementary abelian $l$-group, where $l$ is a rational prime. We show that there exist infinitely many number fields whose $l$-class groups are isomorphic to $G$.References
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- A. Fröhlich, On non-ramified extensions with prescribed Galois group, Mathematika 9 (1962), 133–134. MR 146179, DOI 10.1112/S0025579300003211 H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Ia, Jber. Deutsch. Math.-Verein. 36 (1927), 233-311.
- Helmut Hasse, Eine Folgerung aus H.-W. Leopoldts Theorie der Geschlechter abelscher Zahlkörper, Math. Nachr. 42 (1969), 261–262 (German). MR 260706, DOI 10.1002/mana.19690420405 C. S. Herz, Construction of class fields, Seminar on complex multiplication, Lecture Notes in Math., no. 21, Springer-Verlag, Berlin and New York, 1966. MR 34 #1278. S. Iyanaga, Sur les classes d’idéaux dans les corps quadratiques, Exposés Mathématiques VIII, Actualités Sci. Indust., no. 197, Hermann, Paris, 1935.
- Ladislaus Rédei, Bedingtes Artinsches Symbol mit Anwendung in der Klassenkörpertheorie, Acta Math. Acad. Sci. Hungar. 4 (1953), 1–29 (German, with Russian summary). MR 65588, DOI 10.1007/BF02020350
- Ladislaus Rédei, Die $2$-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung, Acta Math. Acad. Sci. Hungar. 4 (1953), 31–87 (German, with Russian summary). MR 65589, DOI 10.1007/BF02020351
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 284-288
- MSC: Primary 12A35; Secondary 12A50
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366871-8
- MathSciNet review: 0366871