A REAL PLACE ON THE REAL NUMBER FIELD IS TRIVIAL

LYNN E. GARNER

ABSTRACT. This paper proves that any real place from the real number system must be trivial. The result extends to a real place on any archimedean real closed field.

A place \(\phi \) from field \(F \) to field \(K \) is a ring homomorphism from a valuation subring \(V \) of \(F \) into \(K \) whose kernel is the unique maximal ideal of \(V \). A real field is an ordered field in which \(-1\) is not a sum of squares. A real place is a place whose codomain is a real field. A real field is quadratically closed if its positive elements are squares; it is archimedean in case for every element \(x \) there exist rational numbers \(r \) and \(s \) such that \(r < x < s \).

Let \(\mathbb{Q} \) and \(\mathbb{R} \) denote the fields of rational numbers and real numbers, respectively.

Theorem. Let \(F \) be an archimedean quadratically closed real field, and let \(K \) be any real field. If \(\phi \) is a place from \(F \) to \(K \), then \(\phi \) is an isomorphism.

Proof. We may consider \(F \) a subfield of \(\mathbb{R} \) \([1]\). Let \(V \) be the domain of \(\phi \). Since \(\text{char}(K) = 0 \), \(\mathbb{Q} \cap V \) is a valuation subring of \(\mathbb{Q} \) whose residue field has characteristic zero. Hence \(\mathbb{Q} \cap V = \mathbb{Q} \), and \(\phi \) is trivial on \(\mathbb{Q} \).

Suppose there exists \(a \in F, a \neq 0 \), such that \(\phi(a) = 0 \). We may suppose \(a > 0 \). Then there exists \(b \in \mathbb{Q}, b \neq 0 \), such that \(b^2 < a \). Then \(a - b^2 > 0 \), so there exists \(c \in F \) such that \(a - b^2 = c^2 \). Since \(a, b \in V \), we have \(c^2 \in V \); if \(c \notin V \), then \(c^{-1} \in V \) and \(c = c^{-1} \cdot c^2 \in V \); hence \(c \in V \). Then \(-\phi(b^2) = \phi(a - b^2) = \phi(c)^2 \), or \(-1 = \phi(c/b)^2 \), contradicting the fact that \(K \) is real. Hence \(\ker \phi = (0) \), and \(\phi \) is trivial on \(F \).

Corollary. A real place on \(\mathbb{R} \) is trivial.

REFERENCE

MR 41 #8187a.

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UTAH

Presented to the Society, January 22, 1975; received by the editors October 17, 1974.

Copyright © 1975, American Mathematical Society