Pseudo-injective modules which are not quasi-injective
HTML articles powered by AMS MathViewer
- by Mark L. Teply
- Proc. Amer. Math. Soc. 49 (1975), 305-310
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366977-3
- PDF | Request permission
Abstract:
For certain rings with infinitely many nonisomorphic simple left modules, a method is given for constructing pseudo-injective modules which are not quasi-injective. This method is used to produce examples of such modules over a commutative ring.References
- L. Fuchs, Torsion preradicals and ascending Loewy series of modules, J. Reine Angew. Math. 239(240) (1969), 169–179. MR 285565, DOI 10.1515/crll.1969.239-240.169 R. R. Hallett, Injective modules and their generalizations, Ph.D. Thesis, Univ. of British Columbia, Vancouver, B.C., 1971. S. K. Jain, Talk at Special Session on Ring Theory, Amer. Math. Soc. Meeting 711, San Francisco, 1974.
- S. K. Jain and Surjeet Singh, Quasi-injective and pseudo-injective modules, Canad. Math. Bull. 18 (1975), no. 3, 359–366. MR 396669, DOI 10.4153/CMB-1975-065-3
- R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260–268. MR 131445, DOI 10.1112/jlms/s1-36.1.260
- Surjeet Singh and S. K. Jain, On pseudo injective modules and self pseudo injective rings, J. Math. Sci. 2 (1967), 23–31. MR 0219569
- Surjeet Singh and Kamlesh Wasan, Pseudo-injective modules over commutative rings, J. Indian Math. Soc. (N.S.) 34 (1970), 61–65 (1971). MR 289486
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 305-310
- MSC: Primary 16A52
- DOI: https://doi.org/10.1090/S0002-9939-1975-0366977-3
- MathSciNet review: 0366977