Inequalities concerning the characters of a finite group
HTML articles powered by AMS MathViewer
- by K. L. Fields
- Proc. Amer. Math. Soc. 49 (1975), 289-293
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367045-7
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 61 (1976), 186.
Abstract:
Given a finite group we provide explicit bounds (in terms of the group order and numbers of conjugacy classes and involutions) for (a) the number of real valued characters of type ${\mathbf {R}}$; (b) the sum of the degrees of the irreducible characters; (c) the sum of the entries of the character table; (d) the sums (b), (c) restricted to real valued characters. We also provide a bound on the number of elements of order $2n$ in terms of the number of elements of order $n$.References
- Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175. MR 0178056
- Richard Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565–583. MR 74414, DOI 10.2307/1970080
- K. L. Fields, On the conjugating representation of a finite group, Proc. Amer. Math. Soc. 34 (1972), 35–37. MR 297889, DOI 10.1090/S0002-9939-1972-0297889-9 G. Frobenius and I. Schur, Über die Reellen Darstellungen der endlichen Gruppen, S.-B. Preuss. Akad. Wiss. 1906, 186-208.
- Louis Solomon, On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc. 12 (1961), 962–963. MR 132783, DOI 10.1090/S0002-9939-1961-0132783-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 289-293
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367045-7
- MathSciNet review: 0367045