A correction to the paper: “Semi-open sets and semi-continuity in topological spaces” (Amer. Math. Monthly 70 (1963), 36–41) by Norman Levine
HTML articles powered by AMS MathViewer
- by T. R. Hamlett
- Proc. Amer. Math. Soc. 49 (1975), 458-460
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367888-X
- PDF | Request permission
Abstract:
A subset $A$ of a topological space is said to be semi-open if there exists an open set $U$ such that $U \subseteq A \subseteq \operatorname {Cl} (U)$ where $\operatorname {Cl} (U)$ denotes the closure of $U$. The class of semi-open sets of a given topological space $(X,\mathcal {T})$ is denoted ${\text {S}}{\text {.O}}{\text {.}}(X,\mathcal {T})$. In the paper Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41, Norman Levine states in Theorem 10 that if $\mathcal {T}$ and ${\mathcal {T}^ \ast }$ are two topologies for a set $X$ such that ${\text {S}}{\text {.O}}{\text {.}}(X,\mathcal {T}) \subseteq {\text {S}}{\text {.O}}{\text {.}}(X,{\mathcal {T}^ \ast })$, then $\mathcal {T} \subseteq {\mathcal {T}^ \ast }$. In a corollary to this theorem, Levine states that if ${\text {S}}{\text {.O}}{\text {.}}(X,\mathcal {T}) = {\text {S}}{\text {.O}}{\text {.}}(X,{\mathcal {T}^ \ast })$, then $\mathcal {T} = {\mathcal {T}^ \ast }$. An example is given which shows the above-mentioned theorem and its corollary are false. This paper shows how different topologies on a set which determine the same class of semi-open subsets can arise from functions, and points out some of the implications of two topologies being related in this manner.References
- S. Gene Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
—, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123-126.
- S. Gene Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), no. 3, 233–254. MR 301690, DOI 10.4064/fm-74-3-233-254
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Yoshinori Isomichi, New concepts in the theory of topological space—supercondensed set, subcondensed set, and condensed set, Pacific J. Math. 38 (1971), 657–668. MR 310821, DOI 10.2140/pjm.1971.38.657
- Norman Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41. MR 166752, DOI 10.2307/2312781
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 458-460
- MSC: Primary 54A10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367888-X
- MathSciNet review: 0367888