Hopf algebras with nonsemisimple antipode
HTML articles powered by AMS MathViewer
- by Earl J. Taft and Robert Lee Wilson
- Proc. Amer. Math. Soc. 49 (1975), 269-276
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376742-9
- PDF | Request permission
Abstract:
An example is given to show that the antipode of a finite dimensional Hopf algebra over a field of prime characteristic $p > 2$ need not be semisimple. (For $p = 2$ examples were previously known.) The example is a pointed irreducible Hopf algebra $H$ (with antipode $S$) of dimension ${p^3}$ such that ${S^{2p}} = I \ne {S^2}$.References
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Richard Gustavus Larson, Orders in Hopf algebras, J. Algebra 22 (1972), 201–210. MR 299658, DOI 10.1016/0021-8693(72)90140-8
- David E. Radford, A free rank $4$ Hopf algebra with antipode of order $4$, Proc. Amer. Math. Soc. 30 (1971), 55–58. MR 279161, DOI 10.1090/S0002-9939-1971-0279161-5
- David E. Radford, The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math. 98 (1976), no. 2, 333–355. MR 407069, DOI 10.2307/2373888
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Earl J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631–2633. MR 286868, DOI 10.1073/pnas.68.11.2631
- Earl J. Taft and Robert Lee Wilson, On antipodes in pointed Hopf algebras, J. Algebra 29 (1974), 27–32. MR 338053, DOI 10.1016/0021-8693(74)90107-0
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 49 (1975), 269-276
- MSC: Primary 16A24
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376742-9
- MathSciNet review: 0376742