NONCONTINUITY OF TOPOLOGICAL ENTROPY OF MAPS
OF THE CANTOR SET AND OF THE INTERVAL

LOUIS BLOCK

ABSTRACT. We show that topological entropy, as a map on the space of continuous functions of the Cantor set into itself, is not continuous anywhere. Furthermore, topological entropy, as a map on the space of continuous functions of the interval into itself, is not continuous at any map with finite entropy.

1. Introduction. For a compact topological space S, let $C^0(S, S)$ denote the space of continuous functions of S into itself with the topology of uniform convergence. Let I denote the unit interval $[0, 1]$ and C the Cantor set (the usual middle third Cantor set). For $f \in C^0(S, S)$, let $\text{ent}(f)$ denote the topological entropy of f as defined in [1]. (We review the definition in §2.) $\text{ent}(f)$ is a nonnegative real number, or ∞, which describes (quantitatively) the action of f considered as a discrete dynamical system.

Our main results are the following:

Theorem A. The function $\text{ent}: C^0(C, C) \rightarrow \mathbb{R} \cup \{\infty\}$ is not continuous anywhere.

Theorem B. The function $\text{ent}: C^0(I, I) \rightarrow \mathbb{R} \cup \{\infty\}$ is not continuous at any map f with $\text{ent}(f)$ finite.

We note that Theorem B is valid with I replaced by the circle S^1. (See remarks at the end of §4.)

Topological entropy has been studied in [4], [5] and [7] in connection with Smale's program [8] for studying the orbit structure of differentiable maps of manifolds. However the definition and basic properties rely only on continuity (see [1]). Thus it seems natural to determine what is true in the continuous case before proceeding to the differentiable case.

There are examples on higher dimensional manifolds (see [6]) to show that entropy is not continuous in the differentiable case. However, for the
circle or the interval the problem is open. In this connection we mention the following. Let \(C^1(M, M) \) denote the space of continuously differentiable maps of a compact manifold \(M \) into itself with the \(C^1 \) topology.

Theorem C. The function \(\text{ent} : C^1(M, M) \to \mathbb{R} \) is continuous at the identity map of \(M \).

This follows from Proposition 12 of [5].

Finally we remark that positive results on continuity of entropy would have obvious consequences in the theory of bifurcations of differentiable maps. See [2] for some results in this direction.

2. Preliminary definitions and results. We begin by reviewing the definition of topological entropy as defined in [1]. Let \(X \) be a compact topological space. For any two open covers \(\mathcal{V} \) and \(\mathcal{U} \) of \(X \), let \(\mathcal{V} \cap \mathcal{U} \) denote \(\{ A \cap B \mid A \in \mathcal{V} \text{ and } B \in \mathcal{U} \} \). Let \(N(\mathcal{V}) \) denote the number of sets in a subcover of \(\mathcal{V} \) of minimum cardinality.

Let \(f \in C^0(X, X) \). For each integer \(n > 0 \) let

\[
M_n(\mathcal{V}) = N(\mathcal{V} \cup f^{-1}(\mathcal{V}) \cup \cdots \cup f^{-n}(\mathcal{V})).
\]

Here \(f^{-1}(\mathcal{V}) \) denotes the open cover \(\{ f^{-1}(A) \mid A \in \mathcal{V} \} \), and \(f^n \) is defined inductively by \(f^1 = f \) and \(f^n = f^{n-1} \circ f \) for \(n > 1 \).

Set

\[
\text{ent}(f, \mathcal{V}) = \lim_{n \to \infty} n^{-1} \log M_n(\mathcal{V}).
\]

It is easy to show that this limit exists and is finite (see [1]). Finally we define the topological entropy of \(f \) by \(\text{ent}(f) = \sup \{ \text{ent}(f, \mathcal{V}) \mid \mathcal{V} \text{ an open cover of } X \} \).

Next we define the notion of nonwandering set. Let \(f \in C^0(X, X) \). A point \(x \in X \) is said to be wandering if there is a neighborhood \(0 \) of \(x \) such that \(f^n(0) \cap 0 = \emptyset \) for each integer \(n > 0 \). The set of points which are not wandering is called the nonwandering set and denoted \(\Omega(f) \). We remark that \(\Omega(f) \) is a closed subset of \(X \) and \(f(\Omega(f)) \subset \Omega(f) \).

The following proposition is proved by Bowen in [4]. Here \(X \) is a compact metric space.

Proposition 1. Let \(f \in C^0(X, X) \). Then \(\text{ent}(f) = \text{ent}(f|\Omega(f)) \).

One of the inequalities necessary for Proposition 1 follows immediately from the following basic fact which is proved in [1].

Proposition 2. Let \(f \in C^0(X, X) \) and let \(K \) be a closed subset of \(X \).
such that $f(K) \subseteq K$. Then $\text{ent}(f) \geq \text{ent}(f|K)$.

It follows immediately from the definition that if K is finite and $f \in C^0(K, K)$ then $\text{ent}(f) = 0$. Hence by Proposition 1 we have

Proposition 3. Let $f \in C^0(X, X)$. If $\Omega(f)$ is finite then $\text{ent}(f) = 0$.

From the definition of $\Omega(f)$ it follows that $\Omega(f) \subseteq \text{Im}(f)$ (the image of f). Hence we have

Proposition 4. Let $f \in C^0(X, X)$. If $\text{Im}(f)$ is finite then $\text{ent}(f) = 0$.

3. **Proof of Theorem A.** We may think of the Cantor set C as the set of infinite sequences (x_1, x_2, \ldots) such that each x_k is 1 or 2. The topology on C is then given by the metric

$$d((x_1, x_2, \ldots), (y_1, y_2, \ldots)) = \sum_{i=1}^{\infty} (2^{-i})|x_i - y_i|.$$ (Equivalently we are thinking of C as the infinite product of the set $\{1, 2\}$ with the product topology.)

Let $f \in C^0(C, C)$. We have two cases.

Case 1. $\text{ent}(f) > 0$.

Define a sequence (f_k) of functions in $C^0(C, C)$ as follows. Let

$$f_k(x_1, x_2, \ldots) = (y_1, y_2, \ldots, y_k, 1, 1, 1, \ldots)$$

where $f(x_1, x_2, \ldots) = (y_1, y_2, \ldots)$. In other words f_k is the function which assigns to a sequence (x_1, x_2, \ldots) the sequence whose first k terms are the first k terms of $f(x_1, x_2, \ldots)$ and whose terms past the kth term are all 1.

Note that the image of the map f_k is a finite set consisting of at most 2^k points. (For example the image of f_2 consists at most of the points $(1, 1, 1, 1, \ldots), (1, 2, 1, 1, 1, \ldots), (2, 1, 1, 1, 1, \ldots)$, and $(2, 2, 1, 1, 1, \ldots)$.) Hence by Proposition 4, $\text{ent}(f_k) = 0$.

It is easy to see that the sequence (f_k) converges uniformly to f. In fact if $\epsilon > 0$, we can choose an integer N large enough to insure that

$$\sum_{k=N+1}^{\infty} 2^{-k} < \epsilon.$$ Then for $k \geq N$,

$$d(f_k(x_1, x_2, \ldots), f(x_1, x_2, \ldots)) < \epsilon$$

for any $(x_1, x_2, \ldots) \in C$.

Case 2. $\text{ent}(f) = 0$.

Define a sequence (g_k) of functions in $C^0(C, C)$ as follows. Let

$$f(x_1, x_2, \ldots) = (y_1, y_2, \ldots)$$

and set
In other words, $g_k(x_1, x_2, \cdots)$ is the sequence whose first k terms are the same as the first k terms of $f(x_1, x_2, \cdots)$, and whose nth term for $n > k$ is x_{n+1}.

As in Case 1, it is clear that (g_n) converges uniformly to f. We conclude the proof by showing that for each integer $k > 0$, $\text{ent}(g_k) \geq \log(2)$. Fix $k > 0$.

Let O_1 be the set of sequences (x_1, x_2, \cdots) such that $x_{k+1} = 1$. Let O_2 be the set of sequences (x_1, x_2, \cdots) such that $x_{k+1} = 2$. Then $\mathcal{G} = \{O_1, O_2\}$ is an open cover of C. We will show that $\text{ent}(g_k, \mathcal{G}) = \log(2)$.

Let $x = (x_1, x_2, \cdots) \in C$. Then

$x \in O_1 \cap g_k^{-1}(O_1) \iff x_{k+1} = 1$ and $x_{k+2} = 1,$

$x \in O_1 \cap g_k^{-1}(O_2) \iff x_{k+1} = 1$ and $x_{k+2} = 2,$

$x \in O_2 \cap g_k^{-1}(O_1) \iff x_{k+1} = 2$ and $x_{k+2} = 1,$

$x \in O_2 \cap g_k^{-1}(O_2) \iff x_{k+1} = 2$ and $x_{k+2} = 2.$

Thus the sets $O_1 \cap g_k^{-1}(O_1), O_1 \cap g_k^{-1}(O_2), O_2 \cap g_k^{-1}(O_1),$ and $O_2 \cap g_k^{-1}(O_2)$ are pairwise disjoint nonempty subsets of C. Hence $M(g_k, \mathcal{G}) = 4$. It follows in the same way by induction that $M_n(g_k, \mathcal{G}) = 2^n + 1$ for each integer $n > 0$. Hence $\text{ent}(g_k, \mathcal{G}) = \log(2)$. This implies that $\text{ent}(g_k) \geq \log(2)$, and completes the proof of Theorem A.

We remark that since the diameter of $Q \cup g_k \cup g_k^2 \cup \cdots$ approaches zero (as $k \to \infty$), it actually follows that $\text{ent}(g_k) = \log(2)$.

4. Proof of Theorem B. Let K denote any closed interval on the real line. We may form the middle third Cantor subset of K, which we denote by C, and we may identify points in C with sequences whose terms are all 1 or 2, as in §3.

Let s denote the map in $C^0(C, C)$ defined by $s(x_1, x_2, x_3, \cdots) = (x_2, x_3, x_4, \cdots)$. s is sometimes called the full 2-shift (see [8] for discussion and further references). We will use the following elementary facts (see [1]).

Proposition 5. $\text{ent}(s) = \log(2)$.

Proposition 6. If $f \in C^0(X, X)$ for any compact space X, then $\text{ent}(f^n) = n \cdot \text{ent}(f)$.

We will use the usual metric d on $C^0(I, I)$ which may be defined by

$$d(f, g) = \sup \{|f(x) - g(x)| : x \in I\}.$$

Theorem B. The function $\ent: C^0(I, I) \to R \cup \{\infty\}$ is not continuous at any map f with $\ent(f)$ finite.

Proof. Let $f \in C^0(I, I)$ with $\ent(f)$ finite. Let $\ent(f) = \log(K)$. Pick an integer $m > 0$, such that $2^m > 2K$.

Let x_0 be a fixed point of f. We assume for simplicity that $x_0 \neq 1$. (The proof can be easily modified for the case $x_0 = 1$.)

Let $\epsilon > 0$. There exists $\delta > 0$ such that if $|x - x_0| < \delta$ then $|f(x) - x_0| < \epsilon/2$. We may choose δ so that $\delta < \epsilon/2$ and $x_0 + \delta < 1$.

We construct a map $g \in C^0(I, I)$ such that $d(f, g) < \epsilon$. We first construct g on the interval $[x_0, x_0 + \delta/2]$ as follows. Let C denote the middle third Cantor subset of the interval $[x_0, x_0 + \delta/2]$. Define g on C by $g = s^m$, where s denotes the full 2-shift as defined above. Note that $g(x_0) = x_0$ and $g(x_0 + \delta/2) = x_0 + \delta/2$ since x_0 is identified with the sequence $(1, 1, 1, \ldots)$ and $x_0 + \delta/2$ is identified with the sequence $(2, 2, 2, \ldots)$. We extend g to the interval $[x_0, x_0 + \delta/2]$ by defining g linearly on each open interval in $[x_0, x_0 + \delta/2] - C$.

Next we extend g to the interval $[x_0, x_0 + \delta]$ by defining g on the interval $[x_0 + \delta/2, x_0 + \delta]$ as follows. Let $g(x_0 + \delta/2) = x_0 + \delta/2$, $g(x_0 + \delta) = f(x_0 + \delta)$, and define g linearly on $[x_0 + \delta/2, x_0 + \delta]$. Finally we extend g to a map in $C^0(I, I)$ by defining $g(x) = f(x)$ for $x \in I - [x_0, x_0 + \delta]$.

Note that

$$\ent(g) \geq \ent(s^m) = \log(2^m) > \log(2K) = \log(2) + \log(K).$$

We must show that for all $x \in I$, $|f(x) - g(x)| < \epsilon$.

If $x \in I - [x_0, x_0 + \delta]$ then $|f(x) - g(x)| = 0$. If $x \in [x_0, x_0 + \delta]$ then

$$|g(x) - f(x)| = |g(x) - x_0| + |f(x) - x_0| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Here we have used the fact that g is defined linearly on $[x_0 + \delta/2, x_0 + \delta]$, and $|g(x_0 + \delta/2) - x_0| < \epsilon/2$, and $|g(x_0 + \delta) - x_0| < \epsilon/2$.

We have constructed a map $g \in C^0(I, I)$ such that $d(f, g) < \epsilon$, and $\ent(g) > \ent(f) + \log(2)$. Since ϵ was arbitrary this completes the proof that \ent is not continuous at f. Q.E.D.

We conclude this section by remarking that Theorem B is valid with I replaced by the circle S^1. We use the fact that a dense set of maps in
$C^0(S^1, S^1)$ have periodic points (see [3]).

Let $f \in C^0(S^1, S^1)$ and $\epsilon > 0$. Let $f_1 \in C^0(S^1, S^1)$ such that f_1 has a periodic point and $d(f, f_1) < \epsilon/2$. By modifying the argument of Theorem B, with a periodic orbit replacing the role of the fixed point, we construct a map g with $\text{ent}(g) > \text{ent}(f) + \log(2)$, and $d(f_1, g) < \epsilon/2$. Hence ent is not continuous at f.

5. An example. We close by giving an example of $f \in C^0(I, I)$ such that $\text{ent}(f)$ is infinite.

Let K_n denote the interval $[1/(n+1), 1/n]$ for each integer $n > 0$. Define f on each interval K_n as follows. Let C_n denote the middle third Cantor subset of K_n. Let $f = s^n$ on C_n (again s denotes the full 2-shift defined in §4) and extend f to K_n by defining f linearly on each open interval in $K_n - C_n$. We extend f to a map in $C^0(I, I)$ by setting $f(0) = 0$.

It follows from Propositions 2, 5, and 6 that $\text{ent}(f) = \infty$.

REFERENCES

