LOCALIZATIONS AND EVALUATION SUBGROUPS

GEORGE E. LANG, JR.

ABSTRACT. If $G_n(X)$ is the nth evaluation subgroup of a simple connected finite CW-complex, then $G_n(X_p) \cong G_n(X)$ for $p = 0$ or a prime.

Let X be a connected simple finite CW-complex, X_p its localization at p for p prime or 0 [5], and $G_n(X)$ the evaluation subgroup of $\pi_n(X)$ [1]. If $e_p : X \rightarrow X_p$ is the canonical map, we show that $\alpha \in G_n(X)$ if and only if $e_p^*(\alpha) \in G_n(X_p)$ for all p. As corollaries we obtain that $G_n(X_p) \cong G_n(X_p)$ and X is a G-space [1] if and only if X_p is a G-space for all p, where $G_n(X_p)$ is the localization of the group $G_n(X)$. This is analogous to results obtained for H-spaces [3], [5]. All H-spaces are G-spaces, and many properties of H-spaces are shared by G-spaces.

1. Preliminaries. Spaces X and W are assumed to be pointed, simple (abelian fundamental groups acting trivially on the homotopy and homology groups), connected, finite CW-complexes. We will not distinguish between a map and its homotopy class. For p a prime let $Q_p = \{ k/q | k, q \text{ integers, } p \nmid q \}$ and Q_0 the rationals. Q_p is the localization of the integers at the prime p. The general reference for localization theory is [5]. We review some of these results here.

Definition 1.1. A space X is p-local if $\pi_*(X)$ admits a Q_p-module structure extending the usual \mathbb{Z}-module structure.

For each X there is a p-local space X_p and canonical map $e_p : X \rightarrow X_p$ such that if $g : X \rightarrow Y$, where Y is p-local, there is a unique (up to homotopy) $g' : X_p \rightarrow Y$ such that $g \cong g' e_p$. This is equivalent to the map $\phi_p : \pi_*(X) \otimes Q_p \rightarrow \pi_*(X_p)$ being an isomorphism, where $\phi_p(\alpha \otimes r) = r e_p^*(\alpha)$, where the multiplication is the Q_p-module structure on $\pi_*(X)$ (e_p p-localizes in homotopy). Finally we point out that localization is functorial.

Key results about the evaluation subgroups can be found in [1]. We will establish the notations needed in this paper. $L(W, X; f)$ will be the
path component containing \(f : W \to X \) in the space of functions from \(W \) to \(X \) with the compact-open topology; \(L_0(W, X; f) \) will be the subspace of \(L(W, X; f) \) containing base point preserving functions; \(\omega : L(W, X; f) \to X \) will be the function which evaluates each map at the base point of \(W \).

Definition 1.2. The evaluation subgroup, \(G_n(X) \), of \(\pi_n(X) \) is defined by

\[
G_n(X) = \text{Im}(\omega_* : \pi_n(L(X, X; 1_X)) \to \pi_n(X))
\]

where \(1_X \) is the identity on \(X \).

\(G_n(X) \) consists of all elements \(\alpha \in \pi_n(X) \) such that there is a function \(F : X \times S^n \to X \) with \(F|X \cap S^n = 1_X \cap \alpha \). Such a function will be called an affiliated map for \(\alpha \).

2. **Localizations and evaluation subgroups.** Let

\[(1) \quad \hat{e}_p : L(W, X; f) \to L(W, X_p; e_p f) \]

be defined by \(\hat{e}_p(g) = e_p g \).

Theorem 2.1. If \(W \) is a connected finite CW-complex and \(X \) a connected simple CW-complex then (1) \(p \)-localizes in homotopy.

Proof. By Corollary 1.3 in [3] \(\bar{e}_p = \hat{e}_p|L_0(W, X; f) \) \(p \)-localizes. Consider the following commutative diagram:

\[
\begin{array}{ccc}
L_0(W, X; f) & \xrightarrow{\bar{e}_p} & L_0(W, X_p; e_p f) \\
\downarrow & & \downarrow \\
L(W, X; f) & \xrightarrow{\hat{e}_p} & L(W, X_p; e_p f) \\
\downarrow & & \downarrow \\
X & \xrightarrow{e_p} & X_p \\
\end{array}
\]

Since \(\omega \) is a fibration in both columns and two of the three horizontal maps \(p \)-localize, \(\hat{e}_p \) also \(p \)-localizes (see 2.21 and [5]).

Theorem 2.2. If \(\alpha \in G_n(X) \) then \(e_p*(\alpha) \in G_n(X_p) \).

Proof. Let \(F : X \times S^n \to X \) be an affiliated map for \(\alpha \). Let \(\overline{F} \) be the composition

\[
\begin{array}{ccc}
X_p \times S^n & \xrightarrow{1 \times e_p} & X_p \times S^n \\
\downarrow & \xrightarrow{F} & \downarrow \\
X_p & \xrightarrow{e_p} & X_p \\
\end{array}
\]

Note that \((X \times S^n)_p = X_p \times S^n_p \). Since \(\overline{F}|S^n = e_p \alpha \circ e_p = e_p \alpha \), \(\overline{F} \) is an affiliated map for \(e_p*(\alpha) \). This result does not require \(X \) to be finite.

Theorem 2.3. If \(e_p*(\alpha) \in G_n(X_p) \) for all \(p \) then \(\alpha \in G_n(X) \).
Proof. Case 1. α of finite order. Let $p_1^{m_1} p_2^{m_2} \cdots p_n^{m_n}$ be the prime factorization of the order α. Let $P_1 = \prod_{i \neq 1} p_i^{m_i}$. Since $p_1^{m_1}$ and P_1 are relatively prime, there are integers r and s such that $1 = rp_1^{m_1} + sP_1$; so $\alpha = rp_1^{m_1} \alpha + sP_1 \alpha$. $sP_1 \alpha$ is of order $p_1^{m_1}$ while $rp_1^{m_1} \alpha$ is of order P_1. $rp_1^{m_1} \alpha$ can then be written as a sum of its (hence α's) multiples such that one summand is of order $p_2^{m_2}$ and the other of order $\prod_{i > 1} p_i^{m_i}$.

By induction $\alpha = k_1 \alpha + k_2 \alpha + \cdots + k_n \alpha$ where $k_i \alpha$ is of order $p_i^{m_i}$. Since $e_\alpha^p(k_i \alpha) \in G_n(X_p)$ for all p, $e_\alpha^p(k_i \alpha) \in G_n(X_p)$. So if we can show the result for α of order p^m, p any prime, then each $k_i \alpha$ will be in $G_n(X)$ and thus $\alpha \in G_n(X)$.

We assume then that α has order p^m for p prime and localize at this p. Consider the following diagram:

$$
\pi_n(L(X, \chi; e_p)) \xrightarrow{\omega} \pi_n(X_p) \xrightarrow{e_p^*} \pi_n(L(X_p^n, X_p^n; 1))
$$

where $e_p^*(f) = fe_p$. From this commutative diagram and the definition of $e_\alpha^p(\alpha) \in G_n(X_p^n)$ it follows that there is an $\tilde{\alpha} \in \pi_n(L(X, \chi; e_p))$ such that $\omega^*(\tilde{\alpha}) = e_\alpha^p(\alpha)$. Let

$$
\tilde{\phi}_p : \pi_n(L(X, \chi; 1)) \otimes Q_p \rightarrow \pi_n(L(X, \chi; e_p))
$$

be the isomorphism guaranteed by Theorem 2.1. There is an element

$$
\sum (\alpha_i \otimes (k_i/q_i)) \in \pi_n(L(X, \chi; 1)) \otimes Q_p
$$

such that $\tilde{\phi}_p(\sum (\alpha_i \otimes (k_i/q_i))) = \tilde{\alpha}$. If $q = \prod q_i$ and $\overline{q_i} = \prod_{i \neq j} q_j$ then

$$
\sum (\alpha_i \otimes (k_i/q_i)) = \sum (\alpha_i \otimes \overline{q_i} k_i/q) = \sum \overline{q_i} k_i \alpha_i \otimes (1/q) = (\sum \overline{q_i} k_i \alpha_i) \otimes (1/q).
$$

Note that $p \nmid q_i$ for each i, hence $p \nmid q$. Thus there is an element

$$
\beta \otimes (1/q) \in \pi_n(L(X, \chi; 1)) \otimes Q_p
$$

such that $\tilde{\phi}_p(\beta \otimes (1/q)) = \tilde{\alpha}$ and $p \nmid q$. Consider the following diagram:
By commutativity

\[\omega_*(\beta \otimes 1) = \omega_*(\phi_p(\beta \otimes 1)) = \omega_*(\phi_p(q\beta \otimes (1/q))) = \omega_*(q\alpha) = e_{p*}(q\alpha). \]

But \(e_{p*}(q\alpha) = \phi_p(q\alpha \otimes 1) \), so \(\omega_*(\beta \otimes 1) = q\alpha \otimes 1 \) since \(\phi_p \) is an isomorphism. But then \(\omega_*(\beta) = q\alpha + \gamma \) where \(\gamma \) has order \(q' \) and \(p \nmid q' \), so \(\omega_*(q\beta) = q'q\alpha \). Since \(p^m \) and \(q'q \) are relatively prime there are integers \(r \) and \(s \) such that \(rp^m + sq'q = 1 \). Thus \(\omega_*(sq'\beta) = sq'q\alpha = \alpha - rp^m\alpha = \alpha \) and \(\alpha \in G_n(X) \).

\textit{Case 2.} \(\alpha \) of infinite order. Localizing at 0 the above argument yields an element

\[\beta \otimes (1/q) \in \pi_n(L(X, X; 1_X)) \otimes Q_0 \]

such that \(\omega_*(\beta \otimes (1/q)) = \alpha \otimes 1 \), and as above \(\omega_*(q\beta) = q'q\alpha \) for some nonzero integer \(q' \). Thus there are nonzero multiples of \(\alpha \) in \(G_n(X) \). Let \(\overline{q} \) be the least positive integer such that \(\overline{q}\alpha \in G_n(X) \). If \(\overline{q} \neq 1 \) let \(p \) be a prime factor of \(\overline{q} \). Localizing at this \(p \) we obtain an element \(\beta' \in \pi_n(L(X, X; 1_X)) \) and a \(q'' \) where \(p \nmid q'' \) such that \(\omega_*(\beta') = q'' \alpha \). But then \(q''\alpha \) is in the subgroup generated by \(\overline{q}\alpha \) so \(q'' \) is a multiple of \(\overline{q} \). This is a contradiction since \(p \) is a factor of \(\overline{q} \) but not of \(q'' \). Thus \(\overline{q} = 1 \) and \(\alpha \in G_n(X) \).

During the proof we also obtained the following useful corollary.

\textbf{Corollary 2.4.} If \(e_{p*}(\alpha) \in G_n(X_p) \) then there is a \(q \) such that \(p \nmid q \) and \(q\alpha \in G_n(X) \).

\textbf{Corollary 2.5.} \(G_n(X_p) \cong G_n(X)_p \).

\textbf{Proof.} We need only show that \(\phi_p : \pi_n(X) \otimes Q_p \to \pi_n(X_p) \) satisfies

\[\text{Im} \phi_p|G_n(X) \otimes Q_p = G_n(X_p). \]

Say \(\alpha \otimes (1/q) \in G_n(X) \otimes Q_p \) (we can assume any element in \(G_n(X) \otimes Q_p \) has this form by the technique used in 2.3). Let \(F : X \times S^n \to X \) be an
affiliated map for s and $g: S^n \to S^n$ a map corresponding to $1/q \in \pi_n(S^n) \approx \mathbb{Q}_p$. Then the composition

$$X_p \times S^n \xrightarrow{1 \times g} X_p \times S^n \xrightarrow{F_p} X_p$$

is an affiliated map for $\phi_p(\alpha \otimes (1/q))$ and

$$\text{Im } \phi_p|G_n(X) \otimes \mathbb{Q}_p \subset G_n(X_p).$$

Now say $a \in G_n(X_p)$ and $a \otimes (1/q) = \phi_p^{-1}(\tilde{a})$. Then $e_p*(\alpha) \otimes 1 = q\tilde{a} \otimes 1$ and $e_p*(\alpha) - q\tilde{a}$ is of order q' where $p \nmid q'$. Thus $e_p*(q'\alpha) = q'q\tilde{a} \in G_n(X_p)$. By Corollary 2.5 there is a a'' such that $p \nmid q''$ and $q''q\alpha \in G_n(X)$. Then

$$q''q\alpha \otimes \frac{1}{q''q} \in G_n(X) \otimes \mathbb{Q}_p \quad \text{and} \quad \phi_p\left(a''q\alpha \otimes \frac{1}{q''q}\right) = \phi_p\left(a \otimes \frac{1}{q}\right) = a,$$

so $\tilde{a} \in \text{Im } \phi_p|G_n(X) \otimes \mathbb{Q}_p$. Thus $\phi_p|G_n(X) \otimes \mathbb{Q}_p$ is onto $G_n(X_p)$.

Corollary 2.6. X is a G-space if and only if X_p is a G-space for all p.

Proof. By definition X is a G-space if and only if $G_n(X) = \pi_n(X)$ for all n. If X is a G-space, X_p is a G-space for all p by Corollary 2.5. If X_p is a G-space for all p then X is a G-space by Theorem 2.3.

The following application illustrates how these results can be used.

Corollary 2.7. If $G_n(X)$ is torsion without p-torsion, any fibration $f: E \to S^{n+1}$ with fiber X_p admits a cross section.

Proof. In this case $G_n(X)_p = 0$ so by Corollary 2.5 $G_n(X_p) = 0$ and the result follows from Corollary 2.7 in [1].

For example, if V is the real Stiefel manifold V_{n-k} where $n-k = 1$ or 3, $k > 1$, any fibration over S^{n-k+1} with fiber $V_{p'}$ p an odd prime, admits a cross section. This follows from Corollary 2.7 and results in [4].

Corollary 2.4 also provides a shortened proof of Proposition 3 in [2] with simply connected replaced by simple. Let \mathcal{C} be a Serre class of Abelian groups. Haslam defines a G-space mod \mathcal{C} to be a space X such that $\pi_n(X)/G_n(X) \in \mathcal{C}$. A space will be called an H-space mod \mathcal{C} if there is a map $\mu: X \times X \to X$ which, when restricted to each factor, induces a \mathcal{C} isomorphism in homotopy. Let \mathcal{C}_p be the class of finite Abelian groups having no element with order a positive power of p; let $\mathcal{C}_0 = \mathcal{F}$ be the class of finite Abelian groups.
Theorem 2.8 (Haslam). If X is an H-space mod C_p, p prime or 0, then X is a G-space mod C_p.

Proof. If X is an H-space mod C_p then it can be shown that X_p is an H-space and hence a G-space. For every $\alpha \in \pi_n(X)$, $e_p^*(\alpha) \in G_n(X_p)$ and by Corollary 2.4 there is a q where $p \nmid q$ such that $q\alpha \in G_n(X)$. Thus X is a G-space mod C_p.

For C_0 Haslam has obtained a converse to this theorem [2]. For C_p, p prime, the converse is false in general but the simply connected case is still open.

REFERENCES

DEPARTMENT OF MATHEMATICS, FAIRFIELD UNIVERSITY, FAIRFIELD, CONNECTICUT 06430