ON A CONJECTURE OF GROSS

HUI-HSIUNG KUO

ABSTRACT. Gross' conjecture about the generalized Laplacian is proved as a consequence of the main theorem.

1. Gross' conjecture. The generalized Laplacian of a Borel measurable function f in an abstract Wiener space (H, B) is defined by

$$
\Delta f(x) = 2 \lim_{r \downarrow 0} \frac{1}{r^2} \left[E[f(x + W(r))] - f(x) \right],
$$

where W is a Wiener process in B starting at the origin and $r^{(r)}_x$ is the first exit time for $x + W$ from the open ball of radius r in B with center x. Let A be a bounded operator from B to B^* and $u(x) = \frac{1}{2} \langle Ax, x \rangle$. Under the assumption that the B norm $\|\cdot\|$ is twice continuously B-differentiable away from the origin and that the second Fréchet B-derivative is bounded on the annulus $1 < \|x\| < 2$, Gross [2, p. 148] showed that $\Delta u(0) = \text{trace}(A^*H)$. Then he conjectured that the conclusion remains true without any differentiability assumption on the B norm or any assumption concerning the existence of smooth functions on B with bounded support. The purpose of this note is to prove this conjecture. In order to use the results in [3], we assume that there exists a sequence of finite dimensional projections with range in B converging strongly to the identity both in B and in H.

2. Main theorem. We use the same notation as in [3].

Theorem 1. Let f be a twice continuously H-differentiable function in B such that $D^2f(x) \in \mathcal{B}_1(H, H)$, the Banach space of trace class operators of H, for all x in B and D^2f is continuous from B to $\mathcal{B}_1(H, H)$. Let τ be a stopping time (w.r.t. W) such that $\tau < \infty$ a.s. and $\int_1^\infty E[1_{t<\tau} |Df(x_0 + W(t))|^2] dt < \infty$. Then

$$
E[f(x_0 + W(\tau))] = f(x_0) + E \left[\int_0^\tau \frac{1}{2} \text{trace} D^2f(x_0 + W(t)) dt \right].
$$

Received by the editors February 7, 1974 and, in revised form, May 28, 1974.
AMS (MOS) subject classifications (1970). Primary 60H05, 60J45.
1 Research supported by NSF Grant GP-38010.
Proof. From Ito's formula [3, Theorem 4.1]

\[
\int_{x_0}^{x_0 + W(t)} = \int_{x_0}^{t} (Df(x_0 + W(t)), dW(t)) + \int_{0}^{t} \frac{1}{2} \text{trace } D^2 f(x_0 + W(t)) dt.
\]

Upon taking expectations, we obviously obtain the conclusion provided
\[
E[\int_{0}^{t} (Df(x_0 + W(t)), dW(t))] = 0.
\]

This follows from

Lemma 1. Let \(\tau \) be a stopping time and \(\sigma(t) \) an \(H \)-valued nonanticipating process. Assume \(\tau < \infty \) a.s. and \(\int_{1}^{\infty} E[1_{t \leq \tau} |\sigma(t)|^2] dt < \infty \). Then
\[
E[\int_{0}^{\tau} (\sigma(t), dW(t))] = 0.
\]

Proof. The proof of [4, §2.3(4)] can be easily modified to show that
\[
E[\int_{n}^{\tau} (\sigma(t), dW(t))] = 0
\]

This gives the conclusion since \(E[\int_{0}^{\tau} (\sigma(t), dW(t))] = 0 \) for any \(n \geq 0 \).

Corollary 1. Let \(A \) be a bounded operator from \(B \) to \(B^* \) and \(u(x) = \frac{1}{2} \langle Ax, x \rangle \). Then \(\Delta u(x) = \text{trace} (A|H) \) for all \(x \) in \(B \).

Proof. It is easy to see that \(\| (A|H)^*(b) \|_{B^*} \leq \| A \|_{B, B^*} \| b \| \). Hence
\[
(A|H)^* \text{ extends uniquely to a bounded operator from } B \text{ to } B^*.
\]

But \(\{\omega; \tau^{(r)}(\omega) \geq t\} \subset \{\omega; \|W(t)\| \leq r\} \). Hence,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
ON A CONJECTURE OF GROSS

381

\[E[1_{t \leq \tau_{x}}|Du(x + W(t))|^{2}] \leq (a^{2} + b^{2})r^{2}P(\|W(t)\| \leq r) \]
\[= (a^{2} + b^{2})r^{2}p_{t}(S_{r}), \]

where \(S_{r} = \{ y; \| y \| \leq r \} \) and \(p_{t} \) is the Wiener measure.

Now, \(\int_{0}^{\infty} p_{t}(S_{r}) \, dt \leq \int_{0}^{\infty} p_{t}(S_{r}) \, dt = G(S_{r}), \) which is finite by \[2, \text{ Remark 3.5, p. 147}]\). Therefore, \(u \) satisfies the assumption in Theorem 1 for all \(x \) in \(B \) and we have

\[E[u(x + W(\tau_{x}))] - u(x) = \frac{1}{2} E \left[\int_{0}^{\tau_{x}} \text{trace} (A|H) \, dt \right] = \frac{1}{2} \text{trace} (A|H)E[\tau_{x}]. \]

It follows obviously that \(\Delta u(x) = \text{trace} (A|H) \) for all \(x \) in \(B \).

Theorem 2. Let \(g \) be a twice continuously \(H \)-differentiable function in an open subset \(U \) of \(B \) such that \(D^{2}g \) is continuous from \(U \) to \(\mathbb{B}_{1}(H, H) \). Let \(V \) be an open subset of \(U \) with positive \(B \)-distance from the complement of \(U \). Let \(\tau \) be a stopping time such that

(a) almost surely, \(\tau < \infty \) and \(x_{0} + W(t) \in V \) for all \(0 \leq t \leq \tau \), and

(b) \(\int_{0}^{\infty} E[1_{t \leq \tau}|Dg(x_{0} + W(t))|^{2}] \, dt < \infty. \)

Then

\[E[g(x_{0} + W(\tau))] = g(x_{0}) + E \left[\int_{0}^{\tau} \frac{1}{2} \text{trace} \, D^{2}g(x_{0} + W(t)) \, dt \right]. \]

Proof. By \[1, \text{ Lemma 5.4}]\), there exists a twice \(H \)-differentiable function \(\phi \) from \(B \) to \([0, 1]\) such that (i) \(\phi \equiv 1 \) in \(V \), (ii) the support of \(\phi \) has positive \(B \)-distance from the complement of \(U \) and (iii) \(D^{2}\phi \) is continuous from \(B \) to \(\mathbb{B}_{1}(H, H) \). This theorem follows by applying Theorem 1 to the function \(f(x) = \phi(x)g(x) \).

Corollary 2. Let \(g \) be a twice continuously \(H \)-differentiable function in an open subset \(U \) of \(B \) such that \(D^{2}g \) is continuous from \(U \) to \(\mathbb{B}_{1}(H, H) \). Then

\[\Delta g(x) = \text{trace} \, D^{2}g(x), \quad x \in U. \]

Proof. Let \(x \in U \). Take \(V \) to be a small ball around \(x \). Then

\[\int_{1}^{\infty} E[1_{t \leq \tau_{x}}|Dg(x_{0} + W(t))|^{2}] \, dt < \infty \]

in Theorem 2 is satisfied by the same argument as in the proof of Corollary 1. Hence
382 H.-H. KUO

\[E[g(x + W(r^r))] - g(x) = \mathbb{E} \left[\int_0^{r^r} \frac{1}{2} \text{trace } D^2 g(x + W(t)) \, dt \right]. \]

The desired conclusion follows from the continuity of \(D^2 g \).

3. **General theorem.** Without much extra effort, Theorem 1 can be generalized to diffusion processes. Let \(X(t) \) be the solution of the following stochastic integral equation:

\[X(t) = x + \int_0^t A(X(s)) \, dW(s) + \int_0^t \sigma(X(s)) \, ds, \]

where \(A \) and \(\sigma \) are given as in [3, Theorem 5.1].

Theorem 3. Let \(f \) be a twice continuously \(H \)-differentiable function in \(B \) such that \(D^2 f(x) \in \mathcal{B}_1(H, H) \) for all \(x \) in \(B \) and \(D^2 f \) is continuous from \(B \) to \(\mathcal{B}_1(H, H) \). Let \(\tau \) be a stopping time such that \(\tau < \infty \) a.s. and

\[\int_1^\infty E[1_{t \leq \tau} |A^*(X_t)Df(X_t)|^2] \, dt < \infty. \]

Then

\[E[f(X(t))] = f(x) + E \left[\int_0^\tau \left\{ \langle Df(X(t)), \sigma(X(t)) \rangle \right\} \, dt \right] + \frac{1}{2} \text{trace } A^*(X(t))D^2f(X(t))A(X(t)) \, dt. \]

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22903