Malcev algebras with $J_{2}$-potent radical
HTML articles powered by AMS MathViewer
- by Ernest L. Stitzinger
- Proc. Amer. Math. Soc. 50 (1975), 1-9
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374224-1
- PDF | Request permission
Abstract:
Let $A$ be a Malcev algebra, $B$ be an ideal of $A$ and $J_2^1(B) = J(B,A,A)$ where $J(B,A,A)$ is the linear subspace of $A$ spanned by all elements of the form $J(x,y,z) = (xy)z + (yz)x + (zx)y,x \in B,y,z \in A$. For $k \geq 1$, define $J_2^{k + 1}(B) = J(J_2^k(B),A,A)$. Then $B$ is called ${J_2}$-potent if there exists an integer $N \geq 1$ such that $J_2^N(B) = 0$. Now let $A$ be a Malcev algebra over a field of characteristic 0 such that the radical $R$ of $A$ is ${J_2}$-potent. Then $R$ is complemented by a semisimple subalgebra and all such complements are strictly conjugate in $A$. The proofs follow those in the Lie algebra case.References
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- E. N. Kuz′min, Mal′cev algebras and their representations, Algebra i Logika 7 (1968), no. 4, 48–69 (Russian). MR 0252468
- William G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242. MR 45702, DOI 10.1090/S0002-9947-1952-0045702-9
- Ottmar Loos, Über eine Beziehung zwischen Malcev-Algebren und Lietripelsystemen, Pacific J. Math. 18 (1966), 553–562 (German, with English summary). MR 199236
- T. S. Ravisankar, On Malcev algebras, Pacific J. Math. 42 (1972), 227–234. MR 313350
- Arthur A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426–458. MR 143791, DOI 10.1090/S0002-9947-1961-0143791-X
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 50 (1975), 1-9
- MSC: Primary 17E05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374224-1
- MathSciNet review: 0374224