\(\theta \)-REFINABILITY AND LOCAL PROPERTIES

J. M. ATKINS AND R. F. GITTINGS

ABSTRACT. If \(Q \) is a property more general than metrizability, we prove several theorems of the general type: A locally \(Q \), \(\theta \)-refinable space is a \(Q \)-space.

1. Introduction. Let \((Q) \) be a property for a space \(X \). We call a space \(X \) a locally \((Q) \)-space if each point of the space has an open neighborhood with property \((Q) \). Smirnov [20] proved that a paracompact, locally metrizable space is metrizable. Ceder [8] proved that a paracompact, locally \(M_i \) space is an \(M_i \)-space for \(i = 1, 2, 3 \). Burke [5] recently showed that a subparacompact, locally developable space is developable.

Throughout this paper, \(n, m \in \mathbb{N} \) and \(\alpha \in A \). A space \(X \) is \(\theta \)-refinable [21] if for every open cover \(U \) of \(X \) there is a sequence \(\{V_n\} \) of open refinements of \(U \) such that if \(x \in X \), there is an \(n(x) \in \mathbb{N} \) such that \(x \) is contained in at most finitely many members of \(\{V_n\} \) (i.e. \(\text{ord}(x, \{V_n\}) < \infty \)). If \(U = \{U_\alpha\} \) is an open cover of \(X \) and \(\{V_n\} \) is a \(\theta \)-refinement of \(U \) we may assume, without loss of generality, that \(V_n = \{V_n(\alpha)\} \) where \(V_n(\alpha) \subseteq U_\alpha \) for each \(\alpha \in A \). Such a collection \(\{V_n\} \) will be called an indexed \(\theta \)-refinement of \(U \).

Clearly every metacompact space is \(\theta \)-refinable and Burke [5] proved that every subparacompact space is \(\theta \)-refinable. We show in Example 4.4 that paracompactness cannot be replaced by subparacompactness, metacompactness or \(\theta \)-refinability in the results of Smirnov and Ceder.

We assume all spaces are \(T_1 \). The positive integers are denoted by \(\mathbb{N} \).

2. Locally semistratifiable spaces. A space \(X \) is a semistratifiable space if for each open set \(U \subseteq X \), there is a collection \(\{U_n\} \) of closed subsets of \(X \) such that \(U = \bigcup_{n=1}^{\infty} U_n \) and if \(U \subseteq V, V \) open, then \(U_n \subseteq V \).

The concept of a semistratifiable space is due to E. Michael and was first studied by Creede [9]. Creede proved that every semistratifiable space is \(\theta \)-refinable and thus \(\theta \)-refinable.
A collection \mathcal{F} of closed subsets of a space X is a *ct-net* for X if for any two distinct points x, y, of X, there is an $F \in \mathcal{F}$ such that $x \in F$ and $y \not\in F$. A space with a σ-closure preserving ct-net is called a $\sigma^\#$-space. These definitions were introduced by Siwiec and Nagata in [19].

A space X is a β-space if for each $x \in X$, there is a sequence $\{g_n(x)\}$ of open neighborhoods of x such that if $x \in g_n(x)$, then $\{x_n\}$ clusters. The first author and Hodel [12] independently defined β-spaces and proved Theorem 2.1.

Theorem 2.1. A space X is a semistratifiable space if and only if X is a β-space and a $\sigma^\#$-space.

The main result of this section is that a θ-refinable, locally semistratifiable space is semistratifiable. To get this we first obtain the analogous result for β-spaces and $\sigma^\#$-spaces and then invoke Theorem 2.1.

Theorem 2.2. A θ-refinable, locally β-space is a β-space.

Proof. Let $\mathcal{U} = \{U_\alpha\}$ be an open cover of X by β-spaces. For each $x \in X$ and for each $\alpha \in A$ such that $x \in U_\alpha$, let $\{g_{n, \alpha}(x)\}$ be a sequence of open neighborhoods of x illustrating that U_α is a β-space. We may assume $g_{n+1, \alpha}(x) \subseteq g_{n, \alpha}(x)$ for all $n \in \mathbb{N}$. Let \mathcal{V}_α be an indexed θ-refinement of \mathcal{U}. For every $x \in X$ and $n \in \mathbb{N}$ there exists an $\alpha_x \in A$ such that $x \in V_n(\alpha_x)$. Let $h_{n,m}(x) = g_{m, \alpha_x}(x) \cap V_n(\alpha_x)$ and put $h_m(x) = \bigcap_{n=1}^m h_{n,m}(x)$. Suppose $x_0 \in h_m(x_m)$. There exists an integer n_0 such that $\text{ord}(x, \mathcal{V}_{n_0})$ is finite. For $m > n_0$, $x_0 \in h_{n_0,m}(x_m) \subseteq V_{n_0}(\alpha_{x_m})$. But $\{\alpha_{x_m} : m = 1, 2, \ldots\}$ is a finite set and hence there is an $\alpha \in A$ and a subsequence $N_1 \subseteq N_1 \subseteq \mathbb{N}$ such that $\alpha_{x_j} = \alpha$ for all $j \in N_1$. Thus $x_0 \in h_{n_0,1}(x_j) \subseteq V_j(\alpha_j)$ for all $j \in N_1$. Since U_α is a β-space, $\{x_j : j \in N_1\}$ clusters and thus the sequence $\{x_m\}$ clusters. Hence X is a β-space.

In order to establish a theorem for $\sigma^\#$-spaces analogous to Theorem 2.2, we need the following characterization of $\sigma^\#$-spaces due essentially to R. W. Heath.

Lemma 2.3. A space X is a $\sigma^\#$-space if and only if for each $x \in X$, there is a sequence $\{g_n(x)\}$ of open neighborhoods of x such that

$$\bigcap_{n=1}^\infty g_n(x) = \{x\}$$

and if $y \in g_n(x)$, then $g_n(y) \subseteq g_n(x)$.

Theorem 2.4. A θ-refinable, locally $\sigma^\#$-space X is a $\sigma^\#$-space.

Proof. Let $\mathcal{U} = \{U_\alpha\}$ be an open cover of X by $\sigma^\#$-spaces. For each $x \in X$ and for each $\alpha \in A$ such that $x \in U_\alpha$, let $\{g_{n, \alpha}(x)\}$ be a sequence
We first show that if there is a point-finite open refinement of U, then X is a $\sigma^\#$-space. Thus let $\mathcal{U} = \{V_\alpha\}$ be an indexed point-finite open refinement of \mathcal{U}. For each $x \in X$, let $h_n(x) = \bigcap \{g_{n,\alpha}(x) \cap V_\alpha : x \in V_\alpha\}$. Then it is easy to verify that $\{h_n(x)\}$ satisfies the conditions of Lemma 2.3 for X. Thus X is a $\sigma^\#$-space.

Now let $\{H_n\}$ be a θ-refinement of U. Let $X_{n,m} = \{x \in X : \text{ord}(x, H_n) \leq m\}$. Then $X_{n,m}$ is a closed subset of X and every point of $X_{n,m}$ is of finite order relative to H_n. Since the property of being $\sigma^\#$ is hereditary, $\{U \cap X_{n,m} : U \in \mathcal{U}\}$ is an open cover of $X_{n,m}$ by $\sigma^\#$-spaces. Since $\{H \cap X_{n,m} : H \in \mathcal{H}_n\}$ is a point-finite open refinement of $\{U \cap X_{n,m} : U \in \mathcal{U}\}$, $X_{n,m}$ is a $\sigma^\#$-space. But $X = \bigcup_{n,m} X_{n,m}$. Since the countable union of closed $\sigma^\#$-spaces is clearly $\sigma^\#$, X is a $\sigma^\#$-space.

The following result is an immediate consequence of Theorems 2.1, 2.2 and 2.4.

Theorem 2.5. A locally semistratifiable space X is semistratifiable if and only if X is θ-refinable.

Creede [9] has shown that a space X is semimetrizable if and only if X is semistratifiable and first countable. Thus we have the following:

Theorem 2.6. A locally semimetrizable space X is semimetrizable if and only if X is θ-refinable.

A class of spaces which simultaneously generalizes σ-spaces and M^*-spaces [13] is the class of Σ-spaces introduced by Nagami [16]. A space X is a Σ-space if there is a sequence of locally finite closed covers $\{\mathcal{F}_n\}$ of X such that if $x_n \in \bigcap \{F \in \mathcal{F}_n : x \in F\}$ for some fixed point $x \in X$, then
Michael [14] has pointed out that replacing "σ-locally finite" by "σ-closure preserving" in the definition of Σ-space leads to a strictly larger class of spaces, which are called Σ\(^{#}\)-spaces.

It is unknown if a θ-refinable, locally Σ-space is a Σ-space. In fact, it is not even known if the union of two open Σ-spaces is a Σ-space. However, by Corollary 1.10 and Theorem 3.2 of [16], we have the following partial result.

Theorem 2.8. A subparacompact, locally Σ-space is a Σ-space.

On the other hand, using a characterization of Σ\(^{#}\)-spaces given by Nagata [17] (see also [2]) we can obtain the following theorem. The proof is essentially the same as the proof of Theorems 2.2 and 2.4 and is omitted.

Theorem 2.9. A θ-refinable, locally Σ\(^{#}\)-space is a Σ\(^{#}\)-space.

3. Locally p-spaces and locally w\(\Delta\)-spaces.

By Arhangel'skii [1], a completely regular space \(X\) is called a p-space if there is a sequence \(\{U_n\}\) of open (in \(βX\)) covers of \(X\) such that if \(x \in X\), \(\bigcap_{n=1}^{∞} \text{St}(x, U_n) \subseteq X\). If, in addition, for each \(x \in X\) and \(n \in N\) there exists an \(n(x) \in N\) such that
\[
\text{St}(x, U_{n(x)}) \subseteq \text{St}(x, U_n),
\]
then \(X\) is called a strict p-space.

A space \(X\) is a w\(\Delta\)-space [4] if there is a sequence \(\{U_n\}\) of open covers of \(X\) such that if \(x \in \text{St}(x, U_n)\), then \(\{x_n\}\) clusters.

Creede [9] introduced the class of quasi-complete spaces which simultaneously generalizes p-spaces and w\(\Delta\)-spaces. A space \(X\) is a quasi-complete space if there is a sequence \(\{U_n\}\) of open covers of \(X\) such that if \(\{x_k: k > n\} \cup \{x\} \subseteq U \in U_n\) for some fixed point \(x \in X\), then \(\{x_n\}\) clusters.

In order to obtain the results of this section we need the following lemma.

Lemma 3.1 (Burke [6]). For a completely regular θ-refinable space \(X\), the following are equivalent:

(a) \(X\) is a p-space.
(b) \(X\) is a strict p-space.
(c) \(X\) is a w\(\Delta\)-space.
(d) \(X\) is a quasi-complete space.

Moreover, conditions (c) and (d) are equivalent for any θ-refinable space \(X\).

It should be noted that the equivalence of (a), (b) and (c) is the content of Theorem 1.7 of [6]. The "moreover" is Corollary 3.1.8 of [10].

Theorem 3.2. A θ-refinable, locally quasi-complete space \(X\) is quasi-complete.
Proof. Let $\mathcal{U} = \{U_\alpha\}$ be an open cover of X by quasi-complete spaces. For each $\alpha \in A$, let $\{\mathcal{U}_{n, \alpha}\}$ be a sequence of open covers of U_α illustrating that U_α is quasi-complete. We may assume $\mathcal{U}_{n+1, \alpha} < \mathcal{U}_{n, \alpha}$ for all $n \in \mathbb{N}$.

Let $\{\mathcal{O}_n\}$ be an indexed θ-refinement of \mathcal{U}. Let us put $\mathcal{O}_{n,m} = \{G \cap V_\alpha : G \in \mathcal{O}_{n,m}, \alpha \}$ and $K_k = \bigwedge_{n+m=2}^{k+1} W_{n,m}$. Then for each $k \in \mathbb{N}$, K_k is an open cover of X.

Suppose $\{x_i : i > n\} \cup \{x\} \subseteq H_n \in H_n$ for some fixed point $x \in X$. There exists an integer t_0 such that $\text{ord}(x, \mathcal{O}_{n_0})$ is finite. For each $k \in \mathbb{N}$, put $S_k = \{x_i : i \geq n_0 + k\}$. Since $S_k \subseteq H_{n_0+k} \in H_n$, it follows that $S_k \subseteq W$ for some $W \in \mathcal{O}_{n_0,k}$. Thus there exists an $\alpha_k \in A$ and a $G_k \in \mathcal{O}_{k, \alpha_k}$ such that $S_k \subseteq G_k \cap V_{\alpha_k}$. But $\{\alpha_k : k \in \mathbb{N}\}$ is an indexed θ-refinement and hence there is an $\alpha \in A$ and a subsequence $N_1 \subseteq N$ such that $\alpha_j = \alpha$ for all $j \in N_1$. Since $S_j = \{x_i : i \geq n_0 + j\} \cup \{x\} \subseteq G_j \in \mathcal{O}_{j, \alpha}$, the sequence $\{x_n\}$ clusters.

The next two results are an immediate consequence of Lemma 3.1 and Theorem 3.2.

Theorem 3.3. A θ-refinable, locally $w\Delta$-space is a $w\Delta$-space.

Theorem 3.4. A completely regular θ-refinable locally p-space (locally strict p-space) is a p-space (strict p-space).

4. Applications and examples.

Theorem 4.1. A locally Moore space X is a Moore space if and only if X is θ-refinable.

Proof. A locally Moore space is both locally semistratifiable and locally quasi-complete. Thus, by Theorems 3.2 and 2.5, X is both semistratifiable and quasi-complete. It follows from [9, Theorem 4.6] that X is a Moore space. We note that Theorem 4.1 generalizes, at least for regular spaces, the result of Burke mentioned in the Introduction.

Theorem 4.2 (Smirnov [20]). A locally metrizable space X is metrizable if and only if X is paracompact.

Proof. A locally metrizable space is a locally Moore space and hence a Moore space by Theorem 4.1. But a paracompact Moore space is metrizable [3].

The next result follows immediately from Corollary 3.5. For the appropriate definitions the reader is referred to [15].

Theorem 4.3. A paracompact, locally $M (M^*, M^\#)$, or wM)-space X is an $M (M^*, M^\#, wM)$-space.
Example 4.4. Let S be the space of Example 1 in [11]. The space S is a metacompact Moore space which is locally metrizable, but not metrizable. Thus paracompactness in Theorems 4.2 and 4.3 cannot be replaced by metacompactness, subparacompactness or θ-refinability.

Example 4.5. Let X be the space constructed by Burke in [7]. This is an example of a locally compact, locally metrizable space which is not θ-refinable. This example shows that θ-refinability is necessary in Theorems 2.2, 2.5–2.7, 2.9, 3.3, and subparacompactness is necessary in Theorem 2.8.

REFERENCES

DEPARTMENT OF MATHEMATICS, BETHANY COLLEGE, BETHANY, WEST VIRGINIA 26032 (Current address of J. M. Atkins)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA 15260

Current address (R. F. Gittings): Department of Mathematics, (CUNY) Brooklyn College, Brooklyn, New York 11210