Criteria for absolute convergence of Fourier series
HTML articles powered by AMS MathViewer
- by Nicolas Artémiadis
- Proc. Amer. Math. Soc. 50 (1975), 179-183
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377398-1
- PDF | Request permission
Abstract:
Let $f \in {\mathbf {L}^1}({\mathbf {T}})$. Define ${f_\alpha }$ by ${f_\alpha }(x) = f(x + \alpha )$. Then the Fourier series of $f$ is absolutely convergent if and only if there exists a Lebesgue point $\alpha$ for $f$ such that both sequences ${\langle {({{\mathbf {R}}_{\text {e}}}{\hat f_\alpha }(n))^ - }\rangle _{n \in {\mathbf {Z}}}}{\langle {({\mathcal {I}_{\text {m}}}{\hat f_\alpha }(n))^ - }\rangle _{n \in {\mathbf {Z}}}}$ belong to ${l^1}$. The theorem remains true if the sentence “there exists a Lebesgue point $\alpha$ for $f$” is replaced by “there is $\alpha \in {\mathbf {R}}$ such that $f$ is essentially bounded in some neighborhood of $\alpha$".References
- Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 50 (1975), 179-183
- MSC: Primary 42A28
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377398-1
- MathSciNet review: 0377398